Update app.py
Browse files
app.py
CHANGED
|
@@ -2,60 +2,56 @@ import gradio as gr
|
|
| 2 |
import librosa
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
-
from transformers import
|
| 6 |
import tempfile
|
| 7 |
import soundfile as sf
|
| 8 |
import json
|
| 9 |
|
| 10 |
SAMPLE_RATE = 16000
|
| 11 |
-
|
| 12 |
-
STEP =
|
| 13 |
-
MUSIC_THRESHOLD = 0.
|
| 14 |
VOICE_THRESHOLD = 0.3
|
| 15 |
-
|
| 16 |
|
| 17 |
-
# ===
|
| 18 |
music_model_id = "AI-Music-Detection/ai_music_detection_large_60s"
|
| 19 |
-
|
| 20 |
music_model = AutoModelForAudioClassification.from_pretrained(music_model_id)
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
inputs =
|
| 29 |
with torch.no_grad():
|
| 30 |
outputs = music_model(**inputs)
|
| 31 |
-
scores = torch.
|
| 32 |
-
|
| 33 |
-
label_scores = {labels[i].lower(): float(scores[i]) for i in range(len(scores))}
|
| 34 |
-
# 找 music 或 singing 相关标签
|
| 35 |
-
music_score = max([v for k, v in label_scores.items() if "music" in k or "sing" in k] or [0])
|
| 36 |
return music_score
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
def detect_singing(audio_path):
|
| 40 |
wav, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
| 41 |
duration = len(wav) / SAMPLE_RATE
|
| 42 |
results = []
|
| 43 |
|
| 44 |
-
for start in np.arange(0, duration -
|
| 45 |
-
end = start +
|
| 46 |
snippet = wav[int(start * SAMPLE_RATE):int(end * SAMPLE_RATE)]
|
| 47 |
|
| 48 |
-
# 模型输入安全长度
|
| 49 |
-
max_len = SAMPLE_RATE * 60
|
| 50 |
-
if len(snippet) < SAMPLE_RATE * 3: # 过短片段跳过
|
| 51 |
-
continue
|
| 52 |
-
if len(snippet) > max_len:
|
| 53 |
-
snippet = snippet[:max_len]
|
| 54 |
-
|
| 55 |
music_score = predict_music_score(snippet)
|
| 56 |
-
|
| 57 |
-
voice_pred = voice_pipe(snippet, sampling_rate=SAMPLE_RATE)
|
| 58 |
-
voice_score = max([p['score'] for p in voice_pred if 'speech' in p['label'].lower()] or [0])
|
| 59 |
|
| 60 |
if music_score > MUSIC_THRESHOLD and voice_score > VOICE_THRESHOLD:
|
| 61 |
results.append((float(start), float(end)))
|
|
@@ -67,7 +63,7 @@ def detect_singing(audio_path):
|
|
| 67 |
merged.append(list(seg))
|
| 68 |
else:
|
| 69 |
merged[-1][1] = seg[1]
|
| 70 |
-
merged = [(s, e) for s, e in merged if e - s >=
|
| 71 |
return merged
|
| 72 |
|
| 73 |
|
|
@@ -75,14 +71,13 @@ def analyze_audio(file):
|
|
| 75 |
if file is None:
|
| 76 |
return "请上传音频文件", None
|
| 77 |
|
| 78 |
-
audio_path = file
|
| 79 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
| 80 |
-
data, sr = librosa.load(
|
| 81 |
sf.write(tmp.name, data, sr)
|
| 82 |
segments = detect_singing(tmp.name)
|
| 83 |
|
| 84 |
if not segments:
|
| 85 |
-
return "
|
| 86 |
|
| 87 |
json_output = json.dumps(
|
| 88 |
[{"start": s, "end": e, "duration": round(e - s, 2)} for s, e in segments],
|
|
@@ -91,9 +86,13 @@ def analyze_audio(file):
|
|
| 91 |
return f"检测到 {len(segments)} 段唱歌片段", json_output
|
| 92 |
|
| 93 |
|
| 94 |
-
with gr.Blocks(title="🎵 Singing Segment Detector") as demo:
|
| 95 |
-
gr.Markdown(
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
btn = gr.Button("开始分析")
|
| 98 |
status = gr.Textbox(label="分析状态", interactive=False)
|
| 99 |
json_out = gr.Code(label="唱歌片段时间戳(JSON)", language="json")
|
|
|
|
| 2 |
import librosa
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
+
from transformers import AutoProcessor, AutoModelForAudioClassification
|
| 6 |
import tempfile
|
| 7 |
import soundfile as sf
|
| 8 |
import json
|
| 9 |
|
| 10 |
SAMPLE_RATE = 16000
|
| 11 |
+
CHUNK_SIZE = 60 # 模型要求60秒输入
|
| 12 |
+
STEP = 10 # 滑动步长(秒)
|
| 13 |
+
MUSIC_THRESHOLD = 0.5
|
| 14 |
VOICE_THRESHOLD = 0.3
|
| 15 |
+
MIN_SEG_DURATION = 8 # 最小合并段时长
|
| 16 |
|
| 17 |
+
# === 加载固定模型(适用于 60s 音频输入) ===
|
| 18 |
music_model_id = "AI-Music-Detection/ai_music_detection_large_60s"
|
| 19 |
+
music_processor = AutoProcessor.from_pretrained(music_model_id)
|
| 20 |
music_model = AutoModelForAudioClassification.from_pretrained(music_model_id)
|
| 21 |
+
|
| 22 |
+
voice_model_id = "superb/hubert-large-superb-sid"
|
| 23 |
+
voice_processor = AutoProcessor.from_pretrained(voice_model_id)
|
| 24 |
+
voice_model = AutoModelForAudioClassification.from_pretrained(voice_model_id)
|
| 25 |
+
|
| 26 |
+
def predict_music_score(wav):
|
| 27 |
+
wav = librosa.util.fix_length(wav, size=SAMPLE_RATE * CHUNK_SIZE)
|
| 28 |
+
inputs = music_processor(wav, sampling_rate=SAMPLE_RATE, return_tensors="pt", padding=True)
|
| 29 |
with torch.no_grad():
|
| 30 |
outputs = music_model(**inputs)
|
| 31 |
+
scores = torch.softmax(outputs.logits, dim=-1).squeeze()
|
| 32 |
+
music_score = float(scores[1]) if scores.numel() > 1 else float(scores[0])
|
|
|
|
|
|
|
|
|
|
| 33 |
return music_score
|
| 34 |
|
| 35 |
+
def predict_voice_score(wav):
|
| 36 |
+
wav = librosa.util.fix_length(wav, size=SAMPLE_RATE * CHUNK_SIZE)
|
| 37 |
+
inputs = voice_processor(wav, sampling_rate=SAMPLE_RATE, return_tensors="pt", padding=True)
|
| 38 |
+
with torch.no_grad():
|
| 39 |
+
outputs = voice_model(**inputs)
|
| 40 |
+
scores = torch.softmax(outputs.logits, dim=-1).squeeze()
|
| 41 |
+
voice_score = float(scores.mean()) # 简单平均
|
| 42 |
+
return voice_score
|
| 43 |
|
| 44 |
def detect_singing(audio_path):
|
| 45 |
wav, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
| 46 |
duration = len(wav) / SAMPLE_RATE
|
| 47 |
results = []
|
| 48 |
|
| 49 |
+
for start in np.arange(0, max(0, duration - CHUNK_SIZE), STEP):
|
| 50 |
+
end = start + CHUNK_SIZE
|
| 51 |
snippet = wav[int(start * SAMPLE_RATE):int(end * SAMPLE_RATE)]
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
music_score = predict_music_score(snippet)
|
| 54 |
+
voice_score = predict_voice_score(snippet)
|
|
|
|
|
|
|
| 55 |
|
| 56 |
if music_score > MUSIC_THRESHOLD and voice_score > VOICE_THRESHOLD:
|
| 57 |
results.append((float(start), float(end)))
|
|
|
|
| 63 |
merged.append(list(seg))
|
| 64 |
else:
|
| 65 |
merged[-1][1] = seg[1]
|
| 66 |
+
merged = [(s, e) for s, e in merged if e - s >= MIN_SEG_DURATION]
|
| 67 |
return merged
|
| 68 |
|
| 69 |
|
|
|
|
| 71 |
if file is None:
|
| 72 |
return "请上传音频文件", None
|
| 73 |
|
|
|
|
| 74 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
| 75 |
+
data, sr = librosa.load(file, sr=SAMPLE_RATE)
|
| 76 |
sf.write(tmp.name, data, sr)
|
| 77 |
segments = detect_singing(tmp.name)
|
| 78 |
|
| 79 |
if not segments:
|
| 80 |
+
return "未检测到唱歌片段", json.dumps([], indent=2)
|
| 81 |
|
| 82 |
json_output = json.dumps(
|
| 83 |
[{"start": s, "end": e, "duration": round(e - s, 2)} for s, e in segments],
|
|
|
|
| 86 |
return f"检测到 {len(segments)} 段唱歌片段", json_output
|
| 87 |
|
| 88 |
|
| 89 |
+
with gr.Blocks(title="🎵 Singing Segment Detector (Plan A)") as demo:
|
| 90 |
+
gr.Markdown(
|
| 91 |
+
"# 🎤 高精度唱歌片段检测\n"
|
| 92 |
+
"使用 `AI-Music-Detection/ai_music_detection_large_60s` 模型。\n"
|
| 93 |
+
"将视频音频分块分析(60s输入),输出唱歌时间戳 JSON。"
|
| 94 |
+
)
|
| 95 |
+
audio_in = gr.Audio(type="filepath", label="上传音频文件(从视频抽取)")
|
| 96 |
btn = gr.Button("开始分析")
|
| 97 |
status = gr.Textbox(label="分析状态", interactive=False)
|
| 98 |
json_out = gr.Code(label="唱歌片段时间戳(JSON)", language="json")
|