File size: 27,995 Bytes
8e263ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
# XLS-R1B
# ============================================================================
# CELL 1: SETUP AND INSTALLATION
# ============================================================================
import os
import warnings
warnings.filterwarnings('ignore')
print("π MMS Language Identification Test (Final Verified Version)")
print("=" * 60)
# Mount Google Drive
from google.colab import drive
# Install and update necessary packages
print("π¦ Installing and updating packages...")
print("β
Setup complete! Please restart the runtime now to apply updates.")
# ============================================================================
# CELL 2: MODEL LOADING (Final Verified Version)
# ============================================================================
import torch
import librosa
import pandas as pd
import numpy as np
from datetime import datetime
from transformers import Wav2Vec2FeatureExtractor, AutoModelForAudioClassification
from sklearn.metrics import accuracy_score, classification_report
# --- Your Folder and Language Mappings ---
CUSTOM_FOLDER_MAPPING = {
'as': 'asm', 'bn': 'ben', 'br': 'brx', 'doi': 'dgo', 'en': 'eng',
'gu': 'guj', 'hi': 'hin', 'kn': 'kan', 'kok': 'kok', 'ks': 'kas',
'mai': 'mai', 'ml': 'mal', 'mni': 'mni', 'mr': 'mar', 'ne': 'nep',
'or': 'ory', 'pa': 'pan', 'sa': 'san', 'sat': 'sat', 'sd': 'snd',
'ta': 'tam', 'te': 'tel', 'ur': 'urd'
}
ISO_TO_FULL_NAME = {
'asm': 'Assamese', 'ben': 'Bengali', 'brx': 'Bodo', 'dgo': 'Dogri', 'eng': 'English',
'guj': 'Gujarati', 'hin': 'Hindi', 'kan': 'Kannada', 'kok': 'Konkani', 'kas': 'Kashmiri',
'mai': 'Maithili', 'mal': 'Malayalam', 'mni': 'Manipuri', 'mar': 'Marathi', 'nep': 'Nepali',
'ory': 'Odia', 'pan': 'Punjabi', 'san': 'Sanskrit', 'sat': 'Santali', 'snd': 'Sindhi',
'tam': 'Tamil', 'tel': 'Telugu', 'urd': 'Urdu'
}
# --- Update Your Paths ---
AUDIO_FOLDER = "/content/drive/MyDrive/Audio_files" # <-- Update this
RESULTS_FOLDER = "/content/drive/MyDrive/mms_lid_results"
os.makedirs(RESULTS_FOLDER, exist_ok=True)
# --- Load Components Separately (The Fix) ---
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"π§ Device: {device}")
MODEL_NAME = "facebook/mms-lid-256"
# 1. Load the feature extractor ONLY
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(MODEL_NAME)
# 2. Load the model for classification
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME).to(device)
model.eval()
print(f"β
MMS LID model and feature extractor loaded successfully: {MODEL_NAME}")
# ============================================================================
# CELL 3: AUDIO PROCESSING AND PREDICTION
# ============================================================================
def load_audio_raw(file_path):
try:
audio, sr = librosa.load(file_path, sr=16000, mono=True)
duration = len(audio) / 16000
return audio, duration
except Exception as e:
print(f"Error loading {file_path}: {e}")
return None, 0
def predict_language_mms(audio_array):
try:
# Use the feature_extractor directly
inputs = feature_extractor(audio_array, sampling_rate=16000, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
pred_idx = torch.argmax(logits, dim=-1).item()
pred_lang_code = model.config.id2label[pred_idx]
probabilities = torch.softmax(logits, dim=-1)[0]
confidence = probabilities[pred_idx].item()
return pred_lang_code, confidence
except Exception as e:
return "error", 0.0
def find_audio_files(base_path):
audio_files = []
for root, _, files in os.walk(base_path):
folder_code = os.path.basename(root).lower()
if folder_code in CUSTOM_FOLDER_MAPPING:
ground_truth_iso = CUSTOM_FOLDER_MAPPING[folder_code]
for file in files:
if file.lower().endswith(('.wav', '.mp3', '.m4a', '.flac', '.ogg')):
audio_files.append({
"file_path": os.path.join(root, file),
"filename": file,
"ground_truth": ground_truth_iso
})
return audio_files
print("β
Functions are ready!")
# ============================================================================
# CELL 4: PROCESS ALL FILES AND GENERATE REPORT
# ============================================================================
def run_full_analysis():
print("π Processing FULL dataset with MMS LID Model...")
audio_files = find_audio_files(AUDIO_FOLDER)
if not audio_files:
print("β No audio files found. Please check your AUDIO_FOLDER path.")
return
total_files = len(audio_files)
results = []
print(f"π Processing {total_files} files...")
print("-" * 50)
for i, file_info in enumerate(audio_files):
if (i + 1) % 50 == 0:
print(f"Progress: {i+1}/{total_files} ({(i+1)/total_files*100:.1f}%)")
audio, duration = load_audio_raw(str(file_info['file_path']))
if audio is None:
result = {**file_info, "predicted_language": "load_error", "confidence": 0.0, "duration": 0.0, "is_short_file": False}
else:
pred_lang_code, confidence = predict_language_mms(audio)
is_short = duration < 3.0
result = {**file_info, "predicted_language": pred_lang_code, "confidence": confidence, "duration": duration, "is_short_file": is_short}
if is_short and pred_lang_code != "error":
print(f"β οΈ SHORT ({duration:.1f}s): {file_info['filename']} -> {ISO_TO_FULL_NAME.get(pred_lang_code, pred_lang_code)} ({confidence:.3f})")
results.append(result)
results_df = pd.DataFrame(results)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
csv_path = f"{RESULTS_FOLDER}/mms_lid_results_{timestamp}.csv"
results_df.to_csv(csv_path, index=False)
print(f"\nβ
Processing complete! Results saved to: {csv_path}")
# --- Detailed Analysis ---
print("\n" + "=" * 60)
print("π MMS LID MODEL - DETAILED ANALYSIS")
print("=" * 60)
valid_data = results_df[(results_df['predicted_language'] != 'error') & (results_df['predicted_language'] != 'load_error')]
if len(valid_data) > 0:
overall_accuracy = accuracy_score(valid_data['ground_truth'], valid_data['predicted_language'])
print(f"\nπ― OVERALL MODEL ACCURACY: {overall_accuracy:.2%}")
print(f"\nπ LANGUAGE-WISE ACCURACY:")
report_true = [ISO_TO_FULL_NAME.get(code, code) for code in valid_data['ground_truth']]
report_pred = [ISO_TO_FULL_NAME.get(code, code) for code in valid_data['predicted_language']]
print(classification_report(report_true, report_pred, zero_division=0))
short_files = results_df[results_df.get('is_short_file', False) == True]
valid_short = short_files[(short_files['predicted_language'] != 'error') & (short_files['predicted_language'] != 'load_error')]
print(f"\nβ οΈ SHORT FILES ANALYSIS (<3 seconds):")
print(f"Total short files: {len(short_files)}")
if len(valid_short) > 0:
avg_conf = valid_short['confidence'].mean()
print(f"Average confidence for short files: {avg_conf:.3f}")
print("\n" + "=" * 60)
print("π ANALYSIS COMPLETE")
# Run the full analysis
run_full_analysis()
# ============================================================================
# CELL 5: GENERATE FILTERED EXCEL REPORT
# ============================================================================
import pandas as pd
from sklearn.metrics import accuracy_score
# Install the package needed to write Excel files
def generate_filtered_excel_report(df, folder_path):
"""
Generates an Excel report with overall and per-language accuracy,
excluding files shorter than 3 seconds from the accuracy calculation.
"""
if df is None or df.empty:
print("β No results DataFrame found. Please run the analysis in Cell 4 first.")
return
print("π Generating filtered accuracy report...")
# --- 1. Filter the DataFrame ---
# Exclude errors and files shorter than 3 seconds
accuracy_df = df[
(df['duration'] >= 3) &
(df['predicted_language'] != 'error') &
(df['predicted_language'] != 'load_error')
].copy()
print(f"Total files in accuracy calculation (>= 3s): {len(accuracy_df)} out of {len(df)}")
# --- 2. Calculate Overall Accuracy ---
if not accuracy_df.empty:
overall_accuracy = accuracy_score(accuracy_df['ground_truth'], accuracy_df['predicted_language'])
summary_df = pd.DataFrame([{'Overall Accuracy (>= 3s)': f"{overall_accuracy:.2%}"}])
else:
summary_df = pd.DataFrame([{'Overall Accuracy (>= 3s)': "N/A"}])
# --- 3. Calculate Per-Language Accuracy ---
per_language_stats = []
if not accuracy_df.empty:
# Use full names for the report
accuracy_df['ground_truth_name'] = accuracy_df['ground_truth'].map(ISO_TO_FULL_NAME)
accuracy_df['predicted_language_name'] = accuracy_df['predicted_language'].map(ISO_TO_FULL_NAME)
for lang_code, lang_name in sorted(ISO_TO_FULL_NAME.items()):
lang_df = accuracy_df[accuracy_df['ground_truth'] == lang_code]
if not lang_df.empty:
lang_accuracy = accuracy_score(lang_df['ground_truth'], lang_df['predicted_language'])
per_language_stats.append({
'Language': lang_name,
'Accuracy': f"{lang_accuracy:.2%}",
'File Count (>= 3s)': len(lang_df)
})
per_language_df = pd.DataFrame(per_language_stats)
# --- 4. Save to Excel ---
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_path = os.path.join(folder_path, f"filtered_accuracy_report_{timestamp}.xlsx")
with pd.ExcelWriter(report_path, engine='xlsxwriter') as writer:
summary_df.to_excel(writer, sheet_name='Summary', index=False)
per_language_df.to_excel(writer, sheet_name='Per_Language_Accuracy', index=False)
df.to_excel(writer, sheet_name='All_Results', index=False)
accuracy_df.to_excel(writer, sheet_name='Filtered_Results (for accuracy)', index=False)
# Auto-adjust column widths for readability
for sheet_name in writer.sheets:
worksheet = writer.sheets[sheet_name]
for idx, col in enumerate(pd.read_excel(report_path, sheet_name=sheet_name).columns):
max_len = max(
df[col].astype(str).map(len).max() if col in df else 0,
len(str(col))
) + 2
worksheet.set_column(idx, idx, max_len)
print(f"\nβ
Filtered Excel report saved successfully to: {report_path}")
# Run the function to generate the report
# This assumes 'full_results_df' was created in the previous cell
if 'full_results_df' in locals():
generate_filtered_excel_report(full_results_df, RESULTS_FOLDER)
else:
print("β 'full_results_df' not found. Please run the previous cell to process the dataset first.")
# ============================================================================
# CELL 5: LOAD EXISTING RESULTS AND EXTRACT FEATURES
# ============================================================================
import pandas as pd
import numpy as np
import librosa
import os
# --- 1. Load Your Existing CSV File ---
# β οΈ PASTE THE FULL PATH to your CSV file here
csv_path = "/content/drive/MyDrive/mms_lid_results/mms_lid_results_20250925_072344.csv"
try:
full_results_df = pd.read_csv(csv_path)
print(f"β
Successfully loaded {len(full_results_df)} records from {csv_path}")
except FileNotFoundError:
print(f"β ERROR: File not found at '{csv_path}'. Please check the path and try again.")
# Stop execution if the file is not found
raise
# --- 2. In-Depth Feature Extraction ---
print("\nπ Starting in-depth feature extraction...")
def extract_audio_features(row):
"""Calculates SNR proxy and silence ratio for a given audio file."""
try:
audio, sr = librosa.load(row['file_path'], sr=16000, mono=True)
# Calculate RMS energy for silence detection
rms = librosa.feature.rms(y=audio, frame_length=2048, hop_length=512)[0]
# Silence Ratio: Percentage of frames below 20% of max energy
silence_threshold = 0.2 * np.max(rms) if rms.size > 0 else 0
silence_ratio = np.mean(rms < silence_threshold) if rms.size > 0 else 1.0
# SNR Proxy: Ratio of energy in loud parts vs. quiet parts
loud_rms = np.mean(rms[rms >= silence_threshold]) if np.any(rms >= silence_threshold) else 0
quiet_rms = np.mean(rms[rms < silence_threshold]) if np.any(rms < silence_threshold) else 0
snr_proxy = 20 * np.log10(loud_rms / (quiet_rms + 1e-7) + 1e-7) if quiet_rms > 0 else 50.0
return pd.Series([snr_proxy, silence_ratio])
except Exception as e:
return pd.Series([np.nan, np.nan])
# Apply the feature extraction to each row
print("Calculating SNR and silence ratios for all files... (This may take a few minutes)")
features_df = full_results_df.apply(extract_audio_features, axis=1)
features_df.columns = ['snr_proxy', 'silence_ratio']
# Combine the new features with your existing results
analysis_df = pd.concat([full_results_df, features_df], axis=1)
print("β
Feature extraction complete!")
# ============================================================================
# CELL 6: COMPREHENSIVE ANALYSIS AND EXCEL REPORT
# ============================================================================
import pandas as pd
from sklearn.metrics import accuracy_score, confusion_matrix
# Install xlsxwriter if not already installed
def generate_comprehensive_report(df, folder_path):
"""
Generates a comprehensive Excel report with multiple analysis sheets.
"""
if 'analysis_df' not in locals():
print("β 'analysis_df' with features not found. Please run the feature extraction cell first.")
return
print("π Generating comprehensive analysis report...")
# --- Create a new Excel writer ---
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_path = os.path.join(folder_path, f"comprehensive_analysis_report_{timestamp}.xlsx")
writer = pd.ExcelWriter(report_path, engine='xlsxwriter')
# --- Sheet 1: All Results with Features ---
df.to_excel(writer, sheet_name='Results_with_Features', index=False)
# Filter for valid predictions for all subsequent analyses
valid_df = df[
(df['predicted_language'] != 'error') &
(df['predicted_language'] != 'load_error')
].copy()
# --- Sheet 2 & 3: Calibration Analysis ---
n_bins = 10
bins = np.linspace(0, 1, n_bins + 1)
valid_df['confidence_bin'] = pd.cut(valid_df['confidence'], bins=bins, include_lowest=True, right=True)
# Ensure all bins are present for groupby
valid_df['confidence_bin'] = valid_df['confidence_bin'].astype(str)
calib_data = valid_df.groupby('confidence_bin').apply(lambda x: pd.Series({
'bin_accuracy': accuracy_score(x['ground_truth'], x['predicted_language']),
'avg_confidence': x['confidence'].mean(),
'sample_count': len(x)
})).reset_index()
overall_ece = np.sum(np.abs(calib_data['bin_accuracy'] - calib_data['avg_confidence']) * (calib_data['sample_count'] / len(valid_df)))
calibration_overview_df = pd.DataFrame([{'Expected Calibration Error (ECE)': f"{overall_ece:.4f}"}])
calibration_overview_df.to_excel(writer, sheet_name='Calibration_Overview', index=False)
calib_data.to_excel(writer, sheet_name='Calibration_Bins', index=False)
# --- Sheets 4, 5, 6: Accuracy vs. Features ---
def get_accuracy_slice(dataframe, column, bins):
dataframe[f'{column}_bin'] = pd.cut(dataframe[column], bins=bins, include_lowest=True)
return dataframe.groupby(f'{column}_bin', observed=False).apply(lambda x: accuracy_score(x['ground_truth'], x['predicted_language']) if not x.empty else 0).reset_index(name='accuracy')
acc_vs_duration = get_accuracy_slice(valid_df.copy(), 'duration', bins=[0, 1, 2, 3, 5, 10, np.inf])
acc_vs_snr = get_accuracy_slice(valid_df.copy(), 'snr_proxy', bins=[-np.inf, 0, 10, 20, 30, 40, np.inf])
acc_vs_silence = get_accuracy_slice(valid_df.copy(), 'silence_ratio', bins=[-0.01, 0.1, 0.3, 0.5, 0.7, 1.0])
acc_vs_duration.to_excel(writer, sheet_name='Acc_vs_Duration', index=False)
acc_vs_snr.to_excel(writer, sheet_name='Acc_vs_SNR', index=False)
acc_vs_silence.to_excel(writer, sheet_name='Acc_vs_Silence', index=False)
# --- Sheet 7 & 8: Confusion Matrix and Asymmetry ---
labels = sorted(list(set(valid_df['ground_truth'].unique()) | set(valid_df['predicted_language'].unique())))
cm = confusion_matrix(valid_df['ground_truth'], valid_df['predicted_language'], labels=labels)
cm_df = pd.DataFrame(cm, index=[ISO_TO_FULL_NAME.get(l, l) for l in labels], columns=[ISO_TO_FULL_NAME.get(l, l) for l in labels])
confusion_asymmetry_df = cm_df.subtract(cm_df.T)
cm_df.to_excel(writer, sheet_name='Confusion_Matrix')
confusion_asymmetry_df.to_excel(writer, sheet_name='Confusion_Asymmetry')
# --- Sheet 9 & 10: Hard Cases Analysis ---
hard_misclassifications = valid_df[
(valid_df['ground_truth'] != valid_df['predicted_language']) &
(valid_df['confidence'] > 0.8)
].sort_values('confidence', ascending=False)
ambiguous_correct = valid_df[
(valid_df['ground_truth'] == valid_df['predicted_language']) &
(valid_df['confidence'] < 0.5)
].sort_values('confidence', ascending=True)
hard_misclassifications.to_excel(writer, sheet_name='Hard_Misclassifications', index=False)
ambiguous_correct.to_excel(writer, sheet_name='Ambiguous_Correct', index=False)
# --- Save the Excel file ---
writer.close()
print(f"\nβ
Comprehensive analysis report saved successfully to: {report_path}")
# Run the function to generate the final report
if 'analysis_df' in locals():
generate_comprehensive_report(analysis_df, RESULTS_FOLDER)
else:
print("β 'analysis_df' not found. Please run the feature extraction in the previous cell first.")
# ============================================================================
# CELL 6: COMPREHENSIVE ANALYSIS AND EXCEL REPORT (UNIFIED)
# ============================================================================
import pandas as pd
from sklearn.metrics import accuracy_score, confusion_matrix
# Install xlsxwriter if not already installed
def generate_comprehensive_report(df, folder_path):
"""
Generates a comprehensive Excel report with multiple analysis sheets.
"""
if df is None or df.empty:
print("β The 'analysis_df' DataFrame is empty. Please check the previous cell.")
return
print("π Generating comprehensive analysis report...")
# --- Create a new Excel writer ---
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_path = os.path.join(folder_path, f"comprehensive_analysis_report_{timestamp}.xlsx")
with pd.ExcelWriter(report_path, engine='xlsxwriter') as writer:
# --- Sheet 1: All Results with Features ---
df.to_excel(writer, sheet_name='Results_with_Features', index=False)
# Filter for valid predictions for all subsequent analyses
valid_df = df[
(df['predicted_language'] != 'error') &
(df['predicted_language'] != 'load_error')
].copy()
# --- Sheet 2 & 3: Calibration Analysis ---
n_bins = 10
bins = np.linspace(0, 1, n_bins + 1)
valid_df['confidence_bin'] = pd.cut(valid_df['confidence'], bins=bins, include_lowest=True, right=True)
valid_df['confidence_bin'] = valid_df['confidence_bin'].astype(str)
calib_data = valid_df.groupby('confidence_bin', observed=False).apply(lambda x: pd.Series({
'bin_accuracy': accuracy_score(x['ground_truth'], x['predicted_language']) if not x.empty else 0,
'avg_confidence': x['confidence'].mean() if not x.empty else 0,
'sample_count': len(x)
})).reset_index()
overall_ece = np.sum(np.abs(calib_data['bin_accuracy'] - calib_data['avg_confidence']) * (calib_data['sample_count'] / len(valid_df)))
calibration_overview_df = pd.DataFrame([{'Expected Calibration Error (ECE)': f"{overall_ece:.4f}"}])
calibration_overview_df.to_excel(writer, sheet_name='Calibration_Overview', index=False)
calib_data.to_excel(writer, sheet_name='Calibration_Bins', index=False)
# --- Sheets 4, 5, 6: Accuracy vs. Features ---
def get_accuracy_slice(dataframe, column, bins):
dataframe[f'{column}_bin'] = pd.cut(dataframe[column], bins=bins, include_lowest=True)
return dataframe.groupby(f'{column}_bin', observed=False).apply(lambda x: accuracy_score(x['ground_truth'], x['predicted_language']) if not x.empty else 0).reset_index(name='accuracy')
acc_vs_duration = get_accuracy_slice(valid_df.copy(), 'duration', bins=[0, 1, 2, 3, 5, 10, np.inf])
acc_vs_snr = get_accuracy_slice(valid_df.copy(), 'snr_proxy', bins=[-np.inf, 0, 10, 20, 30, 40, np.inf])
acc_vs_silence = get_accuracy_slice(valid_df.copy(), 'silence_ratio', bins=[-0.01, 0.1, 0.3, 0.5, 0.7, 1.0])
acc_vs_duration.to_excel(writer, sheet_name='Acc_vs_Duration', index=False)
acc_vs_snr.to_excel(writer, sheet_name='Acc_vs_SNR', index=False)
acc_vs_silence.to_excel(writer, sheet_name='Acc_vs_Silence', index=False)
# --- Sheet 7 & 8: Confusion Matrix and Asymmetry ---
labels = sorted(list(set(valid_df['ground_truth'].unique()) | set(valid_df['predicted_language'].unique())))
cm = confusion_matrix(valid_df['ground_truth'], valid_df['predicted_language'], labels=labels)
cm_df = pd.DataFrame(cm, index=[ISO_TO_FULL_NAME.get(l, l) for l in labels], columns=[ISO_TO_FULL_NAME.get(l, l) for l in labels])
confusion_asymmetry_df = cm_df.subtract(cm_df.T)
cm_df.to_excel(writer, sheet_name='Confusion_Matrix')
confusion_asymmetry_df.to_excel(writer, sheet_name='Confusion_Asymmetry')
# --- Sheet 9 & 10: Hard Cases Analysis ---
hard_misclassifications = valid_df[
(valid_df['ground_truth'] != valid_df['predicted_language']) &
(valid_df['confidence'] > 0.8)
].sort_values('confidence', ascending=False)
ambiguous_correct = valid_df[
(valid_df['ground_truth'] == valid_df['predicted_language']) &
(valid_df['confidence'] < 0.5)
].sort_values('confidence', ascending=True)
hard_misclassifications.to_excel(writer, sheet_name='Hard_Misclassifications', index=False)
ambiguous_correct.to_excel(writer, sheet_name='Ambiguous_Correct', index=False)
print(f"\nβ
Comprehensive analysis report saved successfully to: {report_path}")
# Run the function to generate the final report
# This will now work because 'analysis_df' was created in the cell right above
if 'analysis_df' in locals():
generate_comprehensive_report(analysis_df, RESULTS_FOLDER)
else:
print("β 'analysis_df' not found. Please re-run the previous cell to load and process the data.")
# ============================================================================
# FINAL ANALYSIS CELL: NORMALIZATION AND DUAL ACCURACY REPORTS
# ============================================================================
import pandas as pd
import numpy as np
from sklearn.metrics import accuracy_score, classification_report
import os
# Install xlsxwriter for Excel reporting
# --- 1. Load Your Existing CSV File ---
# β οΈ PASTE THE FULL PATH to your most recent CSV file here
csv_path = "/content/drive/MyDrive/mms_lid_results/mms_lid_results_20250925_072344.csv"
try:
results_df = pd.read_csv(csv_path)
print(f"β
Successfully loaded {len(results_df)} records from {csv_path}")
except FileNotFoundError:
print(f"β ERROR: File not found at '{csv_path}'. Please check the path and try again.")
raise
# --- 2. Define the Comprehensive Normalization Mapping ---
# This dictionary will standardize all known language code variations.
NORMALIZATION_MAPPING = {
# MMS model's 3-letter codes (prediction) to your 2-letter folder names (ground truth)
'asm': 'as', 'ben': 'bn', 'brx': 'br', 'dgo': 'doi', 'eng': 'en',
'guj': 'gu', 'hin': 'hi', 'kan': 'kn', 'kok': 'kok', 'kas': 'ks',
'mai': 'mai', 'mal': 'ml', 'mni': 'mni', 'mar': 'mr', 'nep': 'ne',
'ory': 'or', 'pan': 'pa', 'san': 'sa', 'sat': 'sat', 'snd': 'sd',
'tam': 'ta', 'tel': 'te', 'urd': 'ur',
# Crucial fix for Nepali
'npi': 'ne'
}
# --- 3. Apply Normalization ---
print("\nApplying comprehensive normalization to language codes...")
results_df['normalized_prediction'] = results_df['predicted_language'].map(NORMALIZATION_MAPPING)
# Fill any unmapped predictions with a placeholder to mark them as incorrect
results_df['normalized_prediction'].fillna('unknown', inplace=True)
# --- 4. Define the Analysis Function ---
def generate_accuracy_report(df, report_title):
"""Calculates and returns overall and per-language accuracy DataFrames."""
print(f"\n--- Generating Report: {report_title} ---")
# Filter for valid predictions (where normalization resulted in a known language)
valid_df = df[df['normalized_prediction'] != 'unknown'].copy()
print(f"Calculating accuracy on {len(valid_df)} valid predictions.")
if valid_df.empty:
print("No valid data to report on.")
return pd.DataFrame([{'Overall Accuracy': 'N/A'}]), pd.DataFrame()
# Calculate Overall Accuracy
overall_accuracy = accuracy_score(valid_df['ground_truth'], valid_df['normalized_prediction'])
summary_df = pd.DataFrame([{'Overall Accuracy': f"{overall_accuracy:.2%}"}])
print(f"Overall Accuracy: {overall_accuracy:.2%}")
# Calculate Per-Language Accuracy
report_dict = classification_report(valid_df['ground_truth'], valid_df['normalized_prediction'], output_dict=True, zero_division=0)
per_language_df = pd.DataFrame(report_dict).transpose().reset_index().rename(columns={'index': 'Language'})
# Keep only the rows for actual languages, not the summary rows
per_language_df = per_language_df[per_language_df['Language'].isin(valid_df['ground_truth'].unique())]
return summary_df, per_language_df
# --- 5. Generate Both Reports ---
# Report 1: Including ALL files
all_files_summary_df, all_files_per_lang_df = generate_accuracy_report(results_df, "All Audio Files")
# Report 2: Excluding files < 3 seconds
df_filtered = results_df[results_df['duration'] >= 3].copy()
filtered_summary_df, filtered_per_lang_df = generate_accuracy_report(df_filtered, "Audio Files >= 3 Seconds")
# --- 6. Save Everything to a Single Excel File ---
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_path = os.path.join(os.path.dirname(csv_path), f"final_corrected_analysis_{timestamp}.xlsx")
print(f"\nπΎ Saving final corrected analysis to: {report_path}")
with pd.ExcelWriter(report_path, engine='xlsxwriter') as writer:
all_files_summary_df.to_excel(writer, sheet_name='Overall_Accuracy_ALL_Files', index=False)
all_files_per_lang_df.to_excel(writer, sheet_name='Per_Lang_Accuracy_ALL_Files', index=False)
filtered_summary_df.to_excel(writer, sheet_name='Overall_Accuracy_>=3_Sec', index=False)
filtered_per_lang_df.to_excel(writer, sheet_name='Per_Lang_Accuracy_>=3_Sec', index=False)
results_df.to_excel(writer, sheet_name='Raw_Normalized_Results', index=False)
print("β
Analysis complete. All reports saved.")
|