Upload 4 files
Browse files- Dockerfile +28 -0
- README.md +94 -7
- app.py +379 -0
- requirements.txt +8 -0
Dockerfile
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
# Install system dependencies
|
| 6 |
+
RUN apt-get update && apt-get install -y \
|
| 7 |
+
git \
|
| 8 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 9 |
+
|
| 10 |
+
# Copy requirements
|
| 11 |
+
COPY requirements.txt .
|
| 12 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 13 |
+
|
| 14 |
+
# Copy application files
|
| 15 |
+
COPY . .
|
| 16 |
+
|
| 17 |
+
# Create persistent volume mount point
|
| 18 |
+
RUN mkdir -p /data/checkpoints /data/models
|
| 19 |
+
|
| 20 |
+
# Set environment variables
|
| 21 |
+
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
| 22 |
+
ENV GRADIO_SERVER_PORT=7860
|
| 23 |
+
|
| 24 |
+
# Expose port
|
| 25 |
+
EXPOSE 7860
|
| 26 |
+
|
| 27 |
+
# Run the application
|
| 28 |
+
CMD ["python", "app.py"]
|
README.md
CHANGED
|
@@ -1,11 +1,98 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk:
|
|
|
|
|
|
|
| 7 |
pinned: false
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: CoDA Fine-tuning
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
+
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
hf_oauth: true
|
| 12 |
+
hf_oauth_scopes:
|
| 13 |
+
- read-repos
|
| 14 |
+
- write-repos
|
| 15 |
---
|
| 16 |
|
| 17 |
+
# CoDA Model Fine-tuning Space
|
| 18 |
+
|
| 19 |
+
This Space allows you to fine-tune the **Salesforce/CoDA-v0-Instruct** text generation diffusion model on the **baseten-admin/gpt-oss120b-generated-perfectblend** dataset.
|
| 20 |
+
|
| 21 |
+
## Features
|
| 22 |
+
|
| 23 |
+
- π― **Full Fine-tuning**: Complete parameter fine-tuning (not LoRA)
|
| 24 |
+
- π¬ **ChatML Format**: Processes conversation data with question-answer pairs
|
| 25 |
+
- π **Auto Upload**: Automatically uploads trained model to your Hugging Face account
|
| 26 |
+
- π **Progress Tracking**: Real-time training progress updates
|
| 27 |
+
- π **OAuth Integration**: Secure authentication via Hugging Face login
|
| 28 |
+
|
| 29 |
+
## How to Use
|
| 30 |
+
|
| 31 |
+
1. **Login**: Click the "Sign in with Hugging Face" button
|
| 32 |
+
2. **Configure**: Adjust training parameters (epochs, batch size, learning rate)
|
| 33 |
+
3. **Train**: Click "Start Training" (requires GPU - upgrade Space to GPU tier)
|
| 34 |
+
4. **Resume**: If training is interrupted, check "Resume from last checkpoint" and restart
|
| 35 |
+
5. **Upload**: After training completes, click "Upload to Hugging Face Hub"
|
| 36 |
+
|
| 37 |
+
### Persistence
|
| 38 |
+
|
| 39 |
+
This Space supports checkpoint persistence:
|
| 40 |
+
- Training checkpoints are saved every 500 steps
|
| 41 |
+
- If interrupted, you can resume from the last checkpoint
|
| 42 |
+
- For Docker deployment: Mount `/data` volume for full persistence
|
| 43 |
+
- On Spaces: Checkpoints persist within the same session and across rebuilds if using persistent storage tier
|
| 44 |
+
|
| 45 |
+
## Requirements
|
| 46 |
+
|
| 47 |
+
- **Hardware**: GPU (T4, A10G, or better) strongly recommended
|
| 48 |
+
- **Account**: Hugging Face account with write permissions
|
| 49 |
+
- **Time**: Training takes several hours depending on configuration
|
| 50 |
+
|
| 51 |
+
## About the Model
|
| 52 |
+
|
| 53 |
+
**CoDA (Code Diffusion with Autoregressive)** is a 1.7B parameter bidirectional diffusion model developed by Salesforce AI Research. Unlike traditional autoregressive models, CoDA uses discrete denoising for text generation. The Instruct version is pre-tuned for instruction following, making it ideal for fine-tuning on conversational data.
|
| 54 |
+
|
| 55 |
+
### Model Configuration
|
| 56 |
+
|
| 57 |
+
```json
|
| 58 |
+
{
|
| 59 |
+
"architectures": ["CoDALanguageModel"],
|
| 60 |
+
"hidden_size": 2048,
|
| 61 |
+
"num_hidden_layers": 28,
|
| 62 |
+
"num_attention_heads": 16,
|
| 63 |
+
"vocab_size": 151936,
|
| 64 |
+
"max_position_embeddings": 40960
|
| 65 |
+
}
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
## Dataset
|
| 69 |
+
|
| 70 |
+
The training uses the **baseten-admin/gpt-oss120b-generated-perfectblend** dataset:
|
| 71 |
+
- **Format**: Conversational data in ChatML format
|
| 72 |
+
- **Column**: `conversations` (list of role-content pairs)
|
| 73 |
+
- **Split**: Uses `train` split with 90/10 train/eval split
|
| 74 |
+
|
| 75 |
+
## Training Details
|
| 76 |
+
|
| 77 |
+
- **Optimizer**: AdamW
|
| 78 |
+
- **Precision**: FP16 (on GPU)
|
| 79 |
+
- **Gradient Accumulation**: 4 steps
|
| 80 |
+
- **Gradient Checkpointing**: Enabled for memory efficiency
|
| 81 |
+
- **Max Sequence Length**: 2048 tokens
|
| 82 |
+
|
| 83 |
+
## Citation
|
| 84 |
+
|
| 85 |
+
If you use this Space or the CoDA model, please cite:
|
| 86 |
+
|
| 87 |
+
```bibtex
|
| 88 |
+
@article{coda2023,
|
| 89 |
+
title={CoDA: Bidirectional Code Diffusion},
|
| 90 |
+
author={Salesforce AI Research},
|
| 91 |
+
journal={arXiv preprint},
|
| 92 |
+
year={2023}
|
| 93 |
+
}
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
## License
|
| 97 |
+
|
| 98 |
+
Apache 2.0
|
app.py
ADDED
|
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import (
|
| 4 |
+
AutoModel,
|
| 5 |
+
AutoTokenizer,
|
| 6 |
+
TrainingArguments,
|
| 7 |
+
Trainer,
|
| 8 |
+
DataCollatorForLanguageModeling
|
| 9 |
+
)
|
| 10 |
+
from datasets import load_dataset
|
| 11 |
+
from huggingface_hub import HfApi, login, whoami
|
| 12 |
+
import os
|
| 13 |
+
from datetime import datetime
|
| 14 |
+
import json
|
| 15 |
+
import pickle
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
|
| 18 |
+
# Custom Trainer for CoDA model
|
| 19 |
+
class CoDATrainer(Trainer):
|
| 20 |
+
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
|
| 21 |
+
"""
|
| 22 |
+
Custom loss computation for CoDA diffusion model.
|
| 23 |
+
CoDA returns a dict with 'loss' key instead of a scalar.
|
| 24 |
+
"""
|
| 25 |
+
outputs = model(**inputs)
|
| 26 |
+
|
| 27 |
+
# CoDA model returns a dict with 'loss' key
|
| 28 |
+
if isinstance(outputs, dict) and 'loss' in outputs:
|
| 29 |
+
loss = outputs['loss']
|
| 30 |
+
elif hasattr(outputs, 'loss'):
|
| 31 |
+
loss = outputs.loss
|
| 32 |
+
else:
|
| 33 |
+
# Fallback: compute standard LM loss
|
| 34 |
+
labels = inputs.get('labels')
|
| 35 |
+
logits = outputs.get('logits') if isinstance(outputs, dict) else outputs[0]
|
| 36 |
+
loss_fct = torch.nn.CrossEntropyLoss()
|
| 37 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 38 |
+
|
| 39 |
+
# Ensure loss is a scalar
|
| 40 |
+
if loss.dim() > 0:
|
| 41 |
+
loss = loss.mean()
|
| 42 |
+
|
| 43 |
+
return (loss, outputs) if return_outputs else loss
|
| 44 |
+
|
| 45 |
+
def preprocess_conversations(examples, tokenizer):
|
| 46 |
+
"""Convert ChatML-style conversations to text for training"""
|
| 47 |
+
texts = []
|
| 48 |
+
for conv in examples['conversations']:
|
| 49 |
+
# Format: [{"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]
|
| 50 |
+
if not isinstance(conv, list):
|
| 51 |
+
raise ValueError(f"Expected conversation to be a list, got {type(conv)}")
|
| 52 |
+
|
| 53 |
+
text = ""
|
| 54 |
+
for message in conv:
|
| 55 |
+
if not isinstance(message, dict):
|
| 56 |
+
raise ValueError(f"Expected message to be a dict, got {type(message)}")
|
| 57 |
+
|
| 58 |
+
role = message.get('role', '')
|
| 59 |
+
content = message.get('content', '')
|
| 60 |
+
if role == 'user':
|
| 61 |
+
text += f"<|user|>\n{content}\n"
|
| 62 |
+
elif role == 'assistant':
|
| 63 |
+
text += f"<|assistant|>\n{content}\n"
|
| 64 |
+
texts.append(text)
|
| 65 |
+
|
| 66 |
+
return tokenizer(texts, truncation=True, max_length=2048, padding=False)
|
| 67 |
+
|
| 68 |
+
# Persistent storage paths
|
| 69 |
+
CHECKPOINT_DIR = Path("/data/checkpoints") if Path("/data").exists() else Path("./checkpoints")
|
| 70 |
+
MODEL_DIR = Path("/data/models") if Path("/data").exists() else Path("./models")
|
| 71 |
+
CHECKPOINT_DIR.mkdir(parents=True, exist_ok=True)
|
| 72 |
+
MODEL_DIR.mkdir(parents=True, exist_ok=True)
|
| 73 |
+
|
| 74 |
+
STATE_FILE = CHECKPOINT_DIR / "training_state.pkl"
|
| 75 |
+
|
| 76 |
+
def save_training_state(state):
|
| 77 |
+
"""Save training state to persistent storage"""
|
| 78 |
+
with open(STATE_FILE, 'wb') as f:
|
| 79 |
+
pickle.dump(state, f)
|
| 80 |
+
|
| 81 |
+
def load_training_state():
|
| 82 |
+
"""Load training state from persistent storage"""
|
| 83 |
+
if STATE_FILE.exists():
|
| 84 |
+
with open(STATE_FILE, 'rb') as f:
|
| 85 |
+
return pickle.load(f)
|
| 86 |
+
return None
|
| 87 |
+
|
| 88 |
+
def train_model(epochs, batch_size, learning_rate, resume=False, progress=gr.Progress()):
|
| 89 |
+
try:
|
| 90 |
+
# Check for existing training state
|
| 91 |
+
if resume:
|
| 92 |
+
saved_state = load_training_state()
|
| 93 |
+
if saved_state:
|
| 94 |
+
progress(0, desc=f"Resuming from step {saved_state.get('step', 0)}...")
|
| 95 |
+
|
| 96 |
+
progress(0, desc="Initializing training...")
|
| 97 |
+
|
| 98 |
+
# Check for GPU
|
| 99 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 100 |
+
if device == "cpu":
|
| 101 |
+
return "β οΈ Warning: Training on CPU will be very slow. Please upgrade Space to GPU."
|
| 102 |
+
|
| 103 |
+
progress(0.1, desc="Loading model and tokenizer...")
|
| 104 |
+
|
| 105 |
+
# Load model and tokenizer
|
| 106 |
+
# Note: Using Instruct version which is better for fine-tuning
|
| 107 |
+
model_name = "Salesforce/CoDA-v0-Instruct"
|
| 108 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 109 |
+
model = AutoModel.from_pretrained(
|
| 110 |
+
model_name,
|
| 111 |
+
trust_remote_code=True,
|
| 112 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# Move model to device (CoDA doesn't support device_map='auto')
|
| 116 |
+
if device == "cuda":
|
| 117 |
+
model = model.to(device)
|
| 118 |
+
|
| 119 |
+
# Set pad token if not exists
|
| 120 |
+
if tokenizer.pad_token is None:
|
| 121 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 122 |
+
model.config.pad_token_id = tokenizer.eos_token_id
|
| 123 |
+
|
| 124 |
+
progress(0.2, desc="Loading dataset...")
|
| 125 |
+
|
| 126 |
+
# Load dataset
|
| 127 |
+
dataset = load_dataset("baseten-admin/gpt-oss120b-generated-perfectblend", split="train")
|
| 128 |
+
|
| 129 |
+
# Verify dataset has conversations column
|
| 130 |
+
if 'conversations' not in dataset.column_names:
|
| 131 |
+
return f"β Error: Dataset does not have 'conversations' column. Found columns: {dataset.column_names}"
|
| 132 |
+
|
| 133 |
+
# Preprocess dataset
|
| 134 |
+
progress(0.3, desc="Preprocessing dataset...")
|
| 135 |
+
tokenized_dataset = dataset.map(
|
| 136 |
+
lambda x: preprocess_conversations(x, tokenizer),
|
| 137 |
+
batched=True,
|
| 138 |
+
remove_columns=dataset.column_names
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
# Split into train/eval
|
| 142 |
+
train_test_split = tokenized_dataset.train_test_split(test_size=0.1, seed=42)
|
| 143 |
+
train_dataset = train_test_split['train']
|
| 144 |
+
eval_dataset = train_test_split['test']
|
| 145 |
+
|
| 146 |
+
progress(0.4, desc="Setting up training configuration...")
|
| 147 |
+
|
| 148 |
+
# Training arguments - use persistent storage
|
| 149 |
+
output_dir = str(MODEL_DIR / "coda-finetuned")
|
| 150 |
+
training_args = TrainingArguments(
|
| 151 |
+
output_dir=output_dir,
|
| 152 |
+
num_train_epochs=epochs,
|
| 153 |
+
per_device_train_batch_size=batch_size,
|
| 154 |
+
per_device_eval_batch_size=batch_size,
|
| 155 |
+
learning_rate=learning_rate,
|
| 156 |
+
warmup_steps=100,
|
| 157 |
+
logging_steps=5, # More frequent logging
|
| 158 |
+
logging_first_step=True,
|
| 159 |
+
eval_strategy="steps",
|
| 160 |
+
eval_steps=100,
|
| 161 |
+
save_strategy="steps",
|
| 162 |
+
save_steps=500,
|
| 163 |
+
save_total_limit=2,
|
| 164 |
+
fp16=True if device == "cuda" else False,
|
| 165 |
+
gradient_accumulation_steps=4,
|
| 166 |
+
gradient_checkpointing=False, # CoDA doesn't support gradient checkpointing
|
| 167 |
+
optim="adamw_torch",
|
| 168 |
+
report_to="none",
|
| 169 |
+
load_best_model_at_end=True,
|
| 170 |
+
metric_for_best_model="loss",
|
| 171 |
+
greater_is_better=False,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# Data collator
|
| 175 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 176 |
+
tokenizer=tokenizer,
|
| 177 |
+
mlm=False
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# Initialize trainer with custom loss
|
| 181 |
+
trainer = CoDATrainer(
|
| 182 |
+
model=model,
|
| 183 |
+
args=training_args,
|
| 184 |
+
train_dataset=train_dataset,
|
| 185 |
+
eval_dataset=eval_dataset,
|
| 186 |
+
data_collator=data_collator,
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
progress(0.5, desc=f"Training for {epochs} epochs...")
|
| 190 |
+
|
| 191 |
+
# Train with live logging
|
| 192 |
+
class ProgressCallback:
|
| 193 |
+
def __init__(self, progress_fn):
|
| 194 |
+
self.progress_fn = progress_fn
|
| 195 |
+
self.step = 0
|
| 196 |
+
|
| 197 |
+
def on_log(self, args, state, control, logs=None, **kwargs):
|
| 198 |
+
if logs:
|
| 199 |
+
self.step += 1
|
| 200 |
+
log_str = f"Step {state.global_step}: "
|
| 201 |
+
if 'loss' in logs:
|
| 202 |
+
log_str += f"loss={logs['loss']:.4f} "
|
| 203 |
+
if 'learning_rate' in logs:
|
| 204 |
+
log_str += f"lr={logs['learning_rate']:.2e}"
|
| 205 |
+
self.progress_fn(0.5 + (0.4 * state.global_step / state.max_steps), desc=log_str)
|
| 206 |
+
|
| 207 |
+
from transformers import TrainerCallback
|
| 208 |
+
class GradioProgressCallback(TrainerCallback):
|
| 209 |
+
def __init__(self, progress_fn):
|
| 210 |
+
self.progress_fn = progress_fn
|
| 211 |
+
|
| 212 |
+
def on_log(self, args, state, control, logs=None, **kwargs):
|
| 213 |
+
if logs and state.max_steps > 0:
|
| 214 |
+
log_str = f"Step {state.global_step}/{state.max_steps}: "
|
| 215 |
+
if 'loss' in logs:
|
| 216 |
+
log_str += f"loss={logs['loss']:.4f} "
|
| 217 |
+
if 'learning_rate' in logs:
|
| 218 |
+
log_str += f"lr={logs['learning_rate']:.2e}"
|
| 219 |
+
progress = 0.5 + (0.4 * state.global_step / state.max_steps)
|
| 220 |
+
self.progress_fn(progress, desc=log_str)
|
| 221 |
+
|
| 222 |
+
# Add state saving callback
|
| 223 |
+
class StateSavingCallback(TrainerCallback):
|
| 224 |
+
def on_save(self, args, state, control, **kwargs):
|
| 225 |
+
save_training_state({
|
| 226 |
+
'step': state.global_step,
|
| 227 |
+
'epoch': state.epoch,
|
| 228 |
+
'best_metric': state.best_metric
|
| 229 |
+
})
|
| 230 |
+
|
| 231 |
+
trainer.add_callback(GradioProgressCallback(progress))
|
| 232 |
+
trainer.add_callback(StateSavingCallback())
|
| 233 |
+
|
| 234 |
+
# Resume from checkpoint if exists
|
| 235 |
+
resume_from_checkpoint = None
|
| 236 |
+
if resume:
|
| 237 |
+
checkpoints = list(Path(output_dir).glob("checkpoint-*"))
|
| 238 |
+
if checkpoints:
|
| 239 |
+
latest_checkpoint = max(checkpoints, key=lambda x: int(x.name.split("-")[1]))
|
| 240 |
+
resume_from_checkpoint = str(latest_checkpoint)
|
| 241 |
+
progress(0, desc=f"Resuming from {latest_checkpoint.name}...")
|
| 242 |
+
|
| 243 |
+
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
| 244 |
+
|
| 245 |
+
progress(0.9, desc="Saving model...")
|
| 246 |
+
|
| 247 |
+
# Save final model
|
| 248 |
+
trainer.save_model(output_dir)
|
| 249 |
+
tokenizer.save_pretrained(output_dir)
|
| 250 |
+
|
| 251 |
+
progress(1.0, desc="Training complete!")
|
| 252 |
+
|
| 253 |
+
return f"β
Training completed successfully!\nModel saved to: {output_dir}\n\nFinal training loss: {trainer.state.log_history[-1].get('loss', 'N/A')}"
|
| 254 |
+
|
| 255 |
+
except Exception as e:
|
| 256 |
+
return f"β Error during training: {str(e)}"
|
| 257 |
+
|
| 258 |
+
def upload_to_hub(repo_name, oauth_token: gr.OAuthToken | None, progress=gr.Progress()):
|
| 259 |
+
try:
|
| 260 |
+
if oauth_token is None:
|
| 261 |
+
return "β Please login first to upload the model!"
|
| 262 |
+
|
| 263 |
+
progress(0, desc="Authenticating...")
|
| 264 |
+
|
| 265 |
+
# Login with OAuth token
|
| 266 |
+
login(token=oauth_token.token)
|
| 267 |
+
user_info = whoami(oauth_token.token)
|
| 268 |
+
username = user_info['name']
|
| 269 |
+
|
| 270 |
+
progress(0.2, desc="Preparing model for upload...")
|
| 271 |
+
|
| 272 |
+
# Full repo ID
|
| 273 |
+
if not repo_name:
|
| 274 |
+
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
|
| 275 |
+
repo_name = f"coda-finetuned-{timestamp}"
|
| 276 |
+
|
| 277 |
+
repo_id = f"{username}/{repo_name}"
|
| 278 |
+
|
| 279 |
+
progress(0.3, desc=f"Creating repository {repo_id}...")
|
| 280 |
+
|
| 281 |
+
# Create repo
|
| 282 |
+
api = HfApi()
|
| 283 |
+
api.create_repo(repo_id=repo_id, exist_ok=True, token=oauth_token.token, repo_type="model")
|
| 284 |
+
|
| 285 |
+
progress(0.5, desc="Uploading model files...")
|
| 286 |
+
|
| 287 |
+
# Upload folder
|
| 288 |
+
model_dir = "./coda-finetuned"
|
| 289 |
+
if not os.path.exists(model_dir):
|
| 290 |
+
return "β No trained model found! Please train a model first."
|
| 291 |
+
|
| 292 |
+
api.upload_folder(
|
| 293 |
+
folder_path=model_dir,
|
| 294 |
+
repo_id=repo_id,
|
| 295 |
+
repo_type="model",
|
| 296 |
+
token=oauth_token.token
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
progress(1.0, desc="Upload complete!")
|
| 300 |
+
|
| 301 |
+
return f"β
Model successfully uploaded to: https://huggingface.co/{repo_id}"
|
| 302 |
+
|
| 303 |
+
except Exception as e:
|
| 304 |
+
return f"β Error during upload: {str(e)}"
|
| 305 |
+
|
| 306 |
+
# Gradio UI
|
| 307 |
+
with gr.Blocks(title="CoDA Fine-tuning Space") as demo:
|
| 308 |
+
gr.Markdown("""
|
| 309 |
+
# π CoDA Model Fine-tuning Space
|
| 310 |
+
|
| 311 |
+
This Space fine-tunes the **Salesforce/CoDA-v0-Instruct** diffusion model on the **baseten-admin/gpt-oss120b-generated-perfectblend** dataset.
|
| 312 |
+
|
| 313 |
+
### Steps:
|
| 314 |
+
1. **Login** with your Hugging Face account (required for upload)
|
| 315 |
+
2. **Configure** training parameters
|
| 316 |
+
3. **Train** the model (requires GPU - upgrade Space if needed)
|
| 317 |
+
4. **Upload** the trained model to your account
|
| 318 |
+
|
| 319 |
+
β οΈ **Note**:
|
| 320 |
+
- Full fine-tuning requires significant GPU resources. Training may take several hours.
|
| 321 |
+
- **Checkpoints are saved every 500 steps** - you can resume if interrupted.
|
| 322 |
+
- For Docker: Mount `/data` volume for full persistence across container restarts.
|
| 323 |
+
- On Spaces: Checkpoints persist in the same session and across rebuilds with persistent storage.
|
| 324 |
+
""")
|
| 325 |
+
|
| 326 |
+
with gr.Row():
|
| 327 |
+
login_button = gr.LoginButton()
|
| 328 |
+
|
| 329 |
+
gr.Markdown("## Training Configuration")
|
| 330 |
+
|
| 331 |
+
with gr.Row():
|
| 332 |
+
with gr.Column():
|
| 333 |
+
epochs = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Epochs")
|
| 334 |
+
batch_size = gr.Slider(minimum=1, maximum=8, value=2, step=1, label="Batch Size per Device")
|
| 335 |
+
learning_rate = gr.Slider(minimum=1e-6, maximum=1e-4, value=2e-5, step=1e-6, label="Learning Rate", info="Default: 2e-5")
|
| 336 |
+
resume_training = gr.Checkbox(label="Resume from last checkpoint", value=False, info="Check if training was interrupted")
|
| 337 |
+
|
| 338 |
+
with gr.Row():
|
| 339 |
+
train_button = gr.Button("π― Start Training", variant="primary", size="lg")
|
| 340 |
+
|
| 341 |
+
training_output = gr.Textbox(label="Training Status", lines=5)
|
| 342 |
+
|
| 343 |
+
gr.Markdown("## Upload Trained Model")
|
| 344 |
+
|
| 345 |
+
with gr.Row():
|
| 346 |
+
repo_name = gr.Textbox(label="Model Repository Name", placeholder="coda-finetuned-v1", info="Leave empty for auto-generated name")
|
| 347 |
+
|
| 348 |
+
with gr.Row():
|
| 349 |
+
upload_button = gr.Button("π€ Upload to Hugging Face Hub", variant="secondary", size="lg")
|
| 350 |
+
|
| 351 |
+
upload_output = gr.Textbox(label="Upload Status", lines=3)
|
| 352 |
+
|
| 353 |
+
gr.Markdown("""
|
| 354 |
+
---
|
| 355 |
+
### About
|
| 356 |
+
|
| 357 |
+
**CoDA (Code Diffusion with Autoregressive)** is a 1.7B parameter bidirectional diffusion model for text generation.
|
| 358 |
+
This Space performs full fine-tuning on conversational data in ChatML format.
|
| 359 |
+
|
| 360 |
+
**Dataset**: The training uses the `conversations` column from the dataset, which contains question-answer pairs.
|
| 361 |
+
|
| 362 |
+
**Hardware**: GPU (T4 or better) is strongly recommended. CPU training will be extremely slow.
|
| 363 |
+
""")
|
| 364 |
+
|
| 365 |
+
# Event handlers
|
| 366 |
+
train_button.click(
|
| 367 |
+
fn=train_model,
|
| 368 |
+
inputs=[epochs, batch_size, learning_rate, resume_training],
|
| 369 |
+
outputs=training_output
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
upload_button.click(
|
| 373 |
+
fn=upload_to_hub,
|
| 374 |
+
inputs=[repo_name, login_button],
|
| 375 |
+
outputs=upload_output
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
if __name__ == "__main__":
|
| 379 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.44.0
|
| 2 |
+
transformers==4.47.1
|
| 3 |
+
torch==2.5.1
|
| 4 |
+
datasets==3.1.0
|
| 5 |
+
huggingface-hub==0.26.2
|
| 6 |
+
accelerate==1.1.1
|
| 7 |
+
bitsandbytes==0.44.1
|
| 8 |
+
scipy==1.14.1
|