Spaces:
Running
Running
Commit
·
6fae7e2
1
Parent(s):
16d72cb
Added general rendering of chats so that they don't disappear during app saving.
Browse files- .gitignore +2 -1
- app.py +455 -340
- constants.py +50 -18
- img/qwen.webp +0 -0
.gitignore
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
env/
|
| 2 |
client_secret.json
|
| 3 |
-
__pycache__
|
|
|
|
|
|
| 1 |
env/
|
| 2 |
client_secret.json
|
| 3 |
+
__pycache__
|
| 4 |
+
.env
|
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import anthropic
|
|
| 7 |
from together import Together
|
| 8 |
import google.generativeai as genai
|
| 9 |
import time
|
|
|
|
| 10 |
from typing import List, Optional, Literal, Union, Dict
|
| 11 |
from constants import (
|
| 12 |
LLM_COUNCIL_MEMBERS,
|
|
@@ -51,7 +52,7 @@ anthropic_client = anthropic.Anthropic()
|
|
| 51 |
client = OpenAI()
|
| 52 |
|
| 53 |
|
| 54 |
-
def anthropic_streamlit_streamer(stream):
|
| 55 |
"""
|
| 56 |
Process the Anthropic streaming response and yield content from the deltas.
|
| 57 |
|
|
@@ -67,6 +68,18 @@ def anthropic_streamlit_streamer(stream):
|
|
| 67 |
if text_delta:
|
| 68 |
yield text_delta
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
# Handle message completion events (optional if needed)
|
| 71 |
elif event.type == "message_stop":
|
| 72 |
break # End of message, stop streaming
|
|
@@ -83,22 +96,34 @@ def get_ui_friendly_name(llm):
|
|
| 83 |
|
| 84 |
|
| 85 |
def google_streamlit_streamer(stream):
|
|
|
|
| 86 |
for chunk in stream:
|
| 87 |
yield chunk.text
|
| 88 |
|
| 89 |
|
| 90 |
-
def together_streamlit_streamer(stream):
|
|
|
|
| 91 |
for chunk in stream:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
yield chunk.choices[0].delta.content
|
| 93 |
|
| 94 |
|
| 95 |
def llm_streamlit_streamer(stream, llm):
|
| 96 |
if llm.startswith("anthropic"):
|
| 97 |
-
|
|
|
|
| 98 |
elif llm.startswith("vertex"):
|
|
|
|
| 99 |
return google_streamlit_streamer(stream)
|
| 100 |
elif llm.startswith("together"):
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
|
| 104 |
# Helper functions for LLM council and aggregator selection
|
|
@@ -152,9 +177,13 @@ def get_llm_response_stream(model_identifier, prompt):
|
|
| 152 |
if provider == "openai":
|
| 153 |
return get_openai_response(model_name, prompt)
|
| 154 |
elif provider == "anthropic":
|
| 155 |
-
return anthropic_streamlit_streamer(
|
|
|
|
|
|
|
| 156 |
elif provider == "together":
|
| 157 |
-
return together_streamlit_streamer(
|
|
|
|
|
|
|
| 158 |
elif provider == "vertex":
|
| 159 |
return google_streamlit_streamer(get_google_response(model_name, prompt))
|
| 160 |
else:
|
|
@@ -174,7 +203,7 @@ def create_dataframe_for_direct_assessment_judging_response(
|
|
| 174 |
for criteria_score in judging_model.criteria_scores:
|
| 175 |
data.append(
|
| 176 |
{
|
| 177 |
-
"
|
| 178 |
"criteria": criteria_score.criterion,
|
| 179 |
"score": criteria_score.score,
|
| 180 |
"explanation": criteria_score.explanation,
|
|
@@ -283,58 +312,62 @@ def get_parse_judging_response_for_direct_assessment_prompt(
|
|
| 283 |
)
|
| 284 |
|
| 285 |
|
| 286 |
-
DEBUG_MODE = True
|
| 287 |
-
|
| 288 |
-
|
| 289 |
def parse_judging_responses(
|
| 290 |
prompt: str, judging_responses: dict[str, str]
|
| 291 |
) -> DirectAssessmentJudgingResponse:
|
| 292 |
-
if DEBUG_MODE:
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
else:
|
| 326 |
-
|
| 327 |
-
model="gpt-4o-mini",
|
| 328 |
-
messages=[
|
| 329 |
-
{
|
| 330 |
-
"role": "system",
|
| 331 |
-
"content": "Parse the judging responses into structured data.",
|
| 332 |
-
},
|
| 333 |
-
{"role": "user", "content": prompt},
|
| 334 |
-
],
|
| 335 |
-
response_format=DirectAssessmentJudgingResponse,
|
| 336 |
-
)
|
| 337 |
-
return completion.choices[0].message.parsed
|
| 338 |
|
| 339 |
|
| 340 |
def plot_criteria_scores(df):
|
|
@@ -401,11 +434,11 @@ def plot_overall_scores(overall_scores_df):
|
|
| 401 |
ax = sns.barplot(
|
| 402 |
x="ui_friendly_name",
|
| 403 |
y="mean_score",
|
| 404 |
-
hue="ui_friendly_name",
|
| 405 |
data=summary,
|
| 406 |
palette="prism",
|
| 407 |
capsize=0.1,
|
| 408 |
-
legend=False,
|
| 409 |
)
|
| 410 |
|
| 411 |
# Add error bars manually
|
|
@@ -420,15 +453,20 @@ def plot_overall_scores(overall_scores_df):
|
|
| 420 |
zorder=10, # Ensure error bars are on top
|
| 421 |
)
|
| 422 |
|
| 423 |
-
# Add text annotations
|
| 424 |
-
for
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
ax.text(
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
f"{row
|
| 429 |
ha="center",
|
| 430 |
va="bottom",
|
| 431 |
-
fontweight="bold",
|
| 432 |
color="black",
|
| 433 |
bbox=dict(facecolor="white", edgecolor="none", alpha=0.7, pad=0.5),
|
| 434 |
)
|
|
@@ -446,23 +484,24 @@ def plot_overall_scores(overall_scores_df):
|
|
| 446 |
def plot_per_judge_overall_scores(df):
|
| 447 |
# Find the overall score by finding the overall score for each judge, and then averaging
|
| 448 |
# over all judges.
|
| 449 |
-
grouped = df.groupby(["
|
| 450 |
-
grouped.columns = ["
|
| 451 |
|
| 452 |
# Create the horizontal bar plot
|
| 453 |
plt.figure(figsize=(10, 6))
|
| 454 |
ax = sns.barplot(
|
| 455 |
data=grouped,
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
hue="
|
| 459 |
-
orient="
|
|
|
|
| 460 |
)
|
| 461 |
|
| 462 |
# Customize the plot
|
| 463 |
-
plt.title("Overall
|
| 464 |
plt.xlabel("Overall Score")
|
| 465 |
-
plt.ylabel("LLM Judge
|
| 466 |
|
| 467 |
# Adjust layout and display the plot
|
| 468 |
plt.tight_layout()
|
|
@@ -510,41 +549,63 @@ def main():
|
|
| 510 |
cols = st.columns([2, 1, 2])
|
| 511 |
if not st.session_state.authenticated:
|
| 512 |
with cols[1]:
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
|
| 520 |
if st.session_state.authenticated:
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
# Council and aggregator selection
|
| 525 |
-
selected_models = llm_council_selector()
|
| 526 |
-
|
| 527 |
-
# st.write("Selected Models:", selected_models)
|
| 528 |
-
|
| 529 |
-
selected_aggregator = aggregator_selector()
|
| 530 |
-
|
| 531 |
# Initialize session state for collecting responses.
|
| 532 |
if "responses" not in st.session_state:
|
| 533 |
-
st.session_state.responses =
|
| 534 |
-
#
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 544 |
|
| 545 |
-
if
|
| 546 |
st.markdown("#### Responses")
|
| 547 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 548 |
response_columns = st.columns(3)
|
| 549 |
|
| 550 |
selected_models_to_streamlit_column_map = {
|
|
@@ -552,7 +613,7 @@ def main():
|
|
| 552 |
}
|
| 553 |
|
| 554 |
# Fetching and streaming responses from each selected model
|
| 555 |
-
for selected_model in selected_models:
|
| 556 |
with selected_models_to_streamlit_column_map[selected_model]:
|
| 557 |
st.write(get_ui_friendly_name(selected_model))
|
| 558 |
with st.chat_message(
|
|
@@ -571,11 +632,8 @@ def main():
|
|
| 571 |
user_prompt=user_prompt, llms=selected_models
|
| 572 |
)
|
| 573 |
|
| 574 |
-
with st.expander("Aggregator Prompt"):
|
| 575 |
-
st.code(aggregator_prompt)
|
| 576 |
-
|
| 577 |
# Fetching and streaming response from the aggregator
|
| 578 |
-
st.write(f"
|
| 579 |
with st.chat_message(
|
| 580 |
selected_aggregator,
|
| 581 |
avatar="img/council_icon.png",
|
|
@@ -589,272 +647,329 @@ def main():
|
|
| 589 |
message_placeholder.write_stream(aggregator_stream)
|
| 590 |
)
|
| 591 |
|
| 592 |
-
|
| 593 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 594 |
|
| 595 |
# Judging.
|
| 596 |
-
st.
|
|
|
|
| 597 |
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
|
| 604 |
-
|
| 605 |
|
| 606 |
-
|
| 607 |
-
|
| 608 |
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 615 |
st.session_state["direct_assessment_judging_df"][
|
| 616 |
-
|
| 617 |
] = {}
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
st.session_state["direct_assessment_judging_responses"][
|
| 626 |
-
|
| 627 |
] = {}
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
for response_model in selected_models:
|
| 635 |
st.session_state["direct_assessment_overall_scores"][
|
| 636 |
-
|
| 637 |
] = {}
|
| 638 |
-
st.session_state
|
| 639 |
-
"
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
)
|
| 652 |
-
|
| 653 |
-
# TODO: Add option to edit criteria list with a basic text field.
|
| 654 |
-
criteria_list = DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST
|
| 655 |
-
|
| 656 |
-
# Create DirectAssessment object when form is submitted
|
| 657 |
-
if center_column.button(
|
| 658 |
-
"Submit Direct Assessment", use_container_width=True
|
| 659 |
-
):
|
| 660 |
|
| 661 |
-
#
|
| 662 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 663 |
|
| 664 |
-
|
| 665 |
-
|
| 666 |
|
| 667 |
-
|
| 668 |
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
|
| 674 |
-
|
| 675 |
-
|
| 676 |
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
response=response,
|
| 693 |
-
criteria_list=criteria_list,
|
| 694 |
-
options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
|
| 695 |
-
)
|
| 696 |
|
| 697 |
-
|
| 698 |
-
|
| 699 |
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
):
|
| 704 |
-
with st.chat_message(
|
| 705 |
-
judging_model,
|
| 706 |
-
avatar=PROVIDER_TO_AVATAR_MAP[judging_model],
|
| 707 |
):
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
judging_model,
|
| 711 |
-
)
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 738 |
)
|
| 739 |
-
)
|
| 740 |
-
with st.expander("Parse Judging Response Prompt"):
|
| 741 |
-
st.code(parse_judging_response_prompt)
|
| 742 |
-
# Issue the prompt to openai mini with structured outputs
|
| 743 |
-
parsed_judging_responses = parse_judging_responses(
|
| 744 |
-
parse_judging_response_prompt, judging_responses
|
| 745 |
-
)
|
| 746 |
-
|
| 747 |
-
st.session_state["direct_assessment_judging_df"][
|
| 748 |
-
response_model
|
| 749 |
-
] = create_dataframe_for_direct_assessment_judging_response(
|
| 750 |
-
parsed_judging_responses
|
| 751 |
-
)
|
| 752 |
-
st.write(
|
| 753 |
-
st.session_state["direct_assessment_judging_df"][
|
| 754 |
-
response_model
|
| 755 |
-
]
|
| 756 |
-
)
|
| 757 |
|
| 758 |
-
plot_criteria_scores(
|
| 759 |
st.session_state["direct_assessment_judging_df"][
|
| 760 |
response_model
|
| 761 |
-
]
|
| 762 |
-
|
|
|
|
| 763 |
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
]
|
| 770 |
-
)
|
| 771 |
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
)
|
| 780 |
-
grouped.columns = ["llm_judge_model", "overall_score"]
|
| 781 |
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 786 |
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
|
| 857 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 858 |
|
| 859 |
else:
|
| 860 |
with cols[1]:
|
|
|
|
| 7 |
from together import Together
|
| 8 |
import google.generativeai as genai
|
| 9 |
import time
|
| 10 |
+
from collections import defaultdict
|
| 11 |
from typing import List, Optional, Literal, Union, Dict
|
| 12 |
from constants import (
|
| 13 |
LLM_COUNCIL_MEMBERS,
|
|
|
|
| 52 |
client = OpenAI()
|
| 53 |
|
| 54 |
|
| 55 |
+
def anthropic_streamlit_streamer(stream, llm):
|
| 56 |
"""
|
| 57 |
Process the Anthropic streaming response and yield content from the deltas.
|
| 58 |
|
|
|
|
| 68 |
if text_delta:
|
| 69 |
yield text_delta
|
| 70 |
|
| 71 |
+
# Count input token usage.
|
| 72 |
+
if event.type == "message_start":
|
| 73 |
+
input_token_usage = event["usage"]["input_tokens"]
|
| 74 |
+
output_token_usage = event["usage"]["output_tokens"]
|
| 75 |
+
st.session_state["input_token_usage"][llm] += input_token_usage
|
| 76 |
+
st.session_state["output_token_usage"][llm] += output_token_usage
|
| 77 |
+
|
| 78 |
+
# Count output token usage.
|
| 79 |
+
if event.type == "message_delta":
|
| 80 |
+
output_token_usage = event["usage"]["output_tokens"]
|
| 81 |
+
st.session_state["output_token_usage"][llm] += output_token_usage
|
| 82 |
+
|
| 83 |
# Handle message completion events (optional if needed)
|
| 84 |
elif event.type == "message_stop":
|
| 85 |
break # End of message, stop streaming
|
|
|
|
| 96 |
|
| 97 |
|
| 98 |
def google_streamlit_streamer(stream):
|
| 99 |
+
# TODO: Count token usage.
|
| 100 |
for chunk in stream:
|
| 101 |
yield chunk.text
|
| 102 |
|
| 103 |
|
| 104 |
+
def together_streamlit_streamer(stream, llm):
|
| 105 |
+
# https://docs.together.ai/docs/chat-overview#streaming-responses
|
| 106 |
for chunk in stream:
|
| 107 |
+
if chunk.usage:
|
| 108 |
+
st.session_state["input_token_usage"][llm] += chunk.usage.prompt_tokens
|
| 109 |
+
if chunk.usage:
|
| 110 |
+
st.session_state["output_token_usage"][llm] += chunk.usage.completion_tokens
|
| 111 |
yield chunk.choices[0].delta.content
|
| 112 |
|
| 113 |
|
| 114 |
def llm_streamlit_streamer(stream, llm):
|
| 115 |
if llm.startswith("anthropic"):
|
| 116 |
+
print(f"Using Anthropic streamer for llm: {llm}")
|
| 117 |
+
return anthropic_streamlit_streamer(stream, llm)
|
| 118 |
elif llm.startswith("vertex"):
|
| 119 |
+
print(f"Using Vertex streamer for llm: {llm}")
|
| 120 |
return google_streamlit_streamer(stream)
|
| 121 |
elif llm.startswith("together"):
|
| 122 |
+
print(f"Using Together streamer for llm: {llm}")
|
| 123 |
+
return together_streamlit_streamer(stream, llm)
|
| 124 |
+
else:
|
| 125 |
+
print(f"Using OpenAI streamer for llm: {llm}")
|
| 126 |
+
return openai_streamlit_streamer(stream, llm)
|
| 127 |
|
| 128 |
|
| 129 |
# Helper functions for LLM council and aggregator selection
|
|
|
|
| 177 |
if provider == "openai":
|
| 178 |
return get_openai_response(model_name, prompt)
|
| 179 |
elif provider == "anthropic":
|
| 180 |
+
return anthropic_streamlit_streamer(
|
| 181 |
+
get_anthropic_response(model_name, prompt), model_identifier
|
| 182 |
+
)
|
| 183 |
elif provider == "together":
|
| 184 |
+
return together_streamlit_streamer(
|
| 185 |
+
get_together_response(model_name, prompt), model_identifier
|
| 186 |
+
)
|
| 187 |
elif provider == "vertex":
|
| 188 |
return google_streamlit_streamer(get_google_response(model_name, prompt))
|
| 189 |
else:
|
|
|
|
| 203 |
for criteria_score in judging_model.criteria_scores:
|
| 204 |
data.append(
|
| 205 |
{
|
| 206 |
+
"judging_model": model_name,
|
| 207 |
"criteria": criteria_score.criterion,
|
| 208 |
"score": criteria_score.score,
|
| 209 |
"explanation": criteria_score.explanation,
|
|
|
|
| 312 |
)
|
| 313 |
|
| 314 |
|
|
|
|
|
|
|
|
|
|
| 315 |
def parse_judging_responses(
|
| 316 |
prompt: str, judging_responses: dict[str, str]
|
| 317 |
) -> DirectAssessmentJudgingResponse:
|
| 318 |
+
# if os.getenv("DEBUG_MODE") == "True":
|
| 319 |
+
# return DirectAssessmentJudgingResponse(
|
| 320 |
+
# judging_models=[
|
| 321 |
+
# DirectAssessmentCriteriaScores(
|
| 322 |
+
# model="together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
| 323 |
+
# criteria_scores=[
|
| 324 |
+
# DirectAssessmentCriterionScore(
|
| 325 |
+
# criterion="helpfulness", score=3, explanation="explanation1"
|
| 326 |
+
# ),
|
| 327 |
+
# DirectAssessmentCriterionScore(
|
| 328 |
+
# criterion="conciseness", score=4, explanation="explanation2"
|
| 329 |
+
# ),
|
| 330 |
+
# DirectAssessmentCriterionScore(
|
| 331 |
+
# criterion="relevance", score=5, explanation="explanation3"
|
| 332 |
+
# ),
|
| 333 |
+
# ],
|
| 334 |
+
# ),
|
| 335 |
+
# DirectAssessmentCriteriaScores(
|
| 336 |
+
# model="together://meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
| 337 |
+
# criteria_scores=[
|
| 338 |
+
# DirectAssessmentCriterionScore(
|
| 339 |
+
# criterion="helpfulness", score=1, explanation="explanation1"
|
| 340 |
+
# ),
|
| 341 |
+
# DirectAssessmentCriterionScore(
|
| 342 |
+
# criterion="conciseness", score=2, explanation="explanation2"
|
| 343 |
+
# ),
|
| 344 |
+
# DirectAssessmentCriterionScore(
|
| 345 |
+
# criterion="relevance", score=3, explanation="explanation3"
|
| 346 |
+
# ),
|
| 347 |
+
# ],
|
| 348 |
+
# ),
|
| 349 |
+
# ]
|
| 350 |
+
# )
|
| 351 |
+
# else:
|
| 352 |
+
completion = client.beta.chat.completions.parse(
|
| 353 |
+
model="gpt-4o-mini",
|
| 354 |
+
messages=[
|
| 355 |
+
{
|
| 356 |
+
"role": "system",
|
| 357 |
+
"content": "Parse the judging responses into structured data.",
|
| 358 |
+
},
|
| 359 |
+
{"role": "user", "content": prompt},
|
| 360 |
+
],
|
| 361 |
+
response_format=DirectAssessmentJudgingResponse,
|
| 362 |
+
)
|
| 363 |
+
return completion.choices[0].message.parsed
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
def get_llm_avatar(model_identifier):
|
| 367 |
+
if "agg__" in model_identifier:
|
| 368 |
+
return "img/council_icon.png"
|
| 369 |
else:
|
| 370 |
+
return PROVIDER_TO_AVATAR_MAP[model_identifier]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
|
| 373 |
def plot_criteria_scores(df):
|
|
|
|
| 434 |
ax = sns.barplot(
|
| 435 |
x="ui_friendly_name",
|
| 436 |
y="mean_score",
|
| 437 |
+
hue="ui_friendly_name",
|
| 438 |
data=summary,
|
| 439 |
palette="prism",
|
| 440 |
capsize=0.1,
|
| 441 |
+
legend=False,
|
| 442 |
)
|
| 443 |
|
| 444 |
# Add error bars manually
|
|
|
|
| 453 |
zorder=10, # Ensure error bars are on top
|
| 454 |
)
|
| 455 |
|
| 456 |
+
# Add text annotations using the actual positions of the bars
|
| 457 |
+
for patch, row in zip(ax.patches, summary.itertuples()):
|
| 458 |
+
# Get the center of each bar (x position)
|
| 459 |
+
x = patch.get_x() + patch.get_width() / 2
|
| 460 |
+
y = patch.get_height()
|
| 461 |
+
|
| 462 |
+
# Add the text annotation
|
| 463 |
ax.text(
|
| 464 |
+
x,
|
| 465 |
+
y,
|
| 466 |
+
f"{row.mean_score:.2f}",
|
| 467 |
ha="center",
|
| 468 |
va="bottom",
|
| 469 |
+
# fontweight="bold",
|
| 470 |
color="black",
|
| 471 |
bbox=dict(facecolor="white", edgecolor="none", alpha=0.7, pad=0.5),
|
| 472 |
)
|
|
|
|
| 484 |
def plot_per_judge_overall_scores(df):
|
| 485 |
# Find the overall score by finding the overall score for each judge, and then averaging
|
| 486 |
# over all judges.
|
| 487 |
+
grouped = df.groupby(["judging_model"]).agg({"score": ["mean"]}).reset_index()
|
| 488 |
+
grouped.columns = ["judging_model", "overall_score"]
|
| 489 |
|
| 490 |
# Create the horizontal bar plot
|
| 491 |
plt.figure(figsize=(10, 6))
|
| 492 |
ax = sns.barplot(
|
| 493 |
data=grouped,
|
| 494 |
+
x="judging_model",
|
| 495 |
+
y="overall_score",
|
| 496 |
+
hue="judging_model",
|
| 497 |
+
orient="v",
|
| 498 |
+
palette="rainbow",
|
| 499 |
)
|
| 500 |
|
| 501 |
# Customize the plot
|
| 502 |
+
plt.title("Overall Score from each LLM Judge")
|
| 503 |
plt.xlabel("Overall Score")
|
| 504 |
+
plt.ylabel("LLM Judge")
|
| 505 |
|
| 506 |
# Adjust layout and display the plot
|
| 507 |
plt.tight_layout()
|
|
|
|
| 549 |
cols = st.columns([2, 1, 2])
|
| 550 |
if not st.session_state.authenticated:
|
| 551 |
with cols[1]:
|
| 552 |
+
with st.form("login_form"):
|
| 553 |
+
password = st.text_input("Password", type="password")
|
| 554 |
+
submit_button = st.form_submit_button("Login", use_container_width=True)
|
| 555 |
+
|
| 556 |
+
if submit_button:
|
| 557 |
+
if password == PASSWORD:
|
| 558 |
+
st.session_state.authenticated = True
|
| 559 |
+
st.success("Logged in successfully!")
|
| 560 |
+
st.rerun()
|
| 561 |
+
else:
|
| 562 |
+
st.error("Invalid credentials")
|
| 563 |
|
| 564 |
if st.session_state.authenticated:
|
| 565 |
+
if "responses_collected" not in st.session_state:
|
| 566 |
+
st.session_state["responses_collected"] = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 567 |
# Initialize session state for collecting responses.
|
| 568 |
if "responses" not in st.session_state:
|
| 569 |
+
st.session_state.responses = defaultdict(str)
|
| 570 |
+
# Initialize session state for token usage.
|
| 571 |
+
if "input_token_usage" not in st.session_state:
|
| 572 |
+
st.session_state["input_token_usage"] = defaultdict(int)
|
| 573 |
+
if "output_token_usage" not in st.session_state:
|
| 574 |
+
st.session_state["output_token_usage"] = defaultdict(int)
|
| 575 |
+
if "selected_models" not in st.session_state:
|
| 576 |
+
st.session_state["selected_models"] = []
|
| 577 |
+
if "selected_aggregator" not in st.session_state:
|
| 578 |
+
st.session_state["selected_aggregator"] = None
|
| 579 |
+
|
| 580 |
+
with st.form(key="prompt_form"):
|
| 581 |
+
st.markdown("#### LLM Council Member Selection")
|
| 582 |
+
|
| 583 |
+
# Council and aggregator selection
|
| 584 |
+
selected_models = llm_council_selector()
|
| 585 |
+
selected_aggregator = aggregator_selector()
|
| 586 |
+
|
| 587 |
+
# Prompt input and submission form
|
| 588 |
+
st.markdown("#### Enter your prompt")
|
| 589 |
+
_, center_column, _ = st.columns([3, 5, 3])
|
| 590 |
+
with center_column:
|
| 591 |
+
user_prompt = st.text_area(
|
| 592 |
+
"Enter your prompt",
|
| 593 |
+
value="Say 'Hello World'",
|
| 594 |
+
key="user_prompt",
|
| 595 |
+
label_visibility="hidden",
|
| 596 |
+
)
|
| 597 |
+
submit_button = st.form_submit_button(
|
| 598 |
+
"Submit", use_container_width=True
|
| 599 |
+
)
|
| 600 |
|
| 601 |
+
if submit_button:
|
| 602 |
st.markdown("#### Responses")
|
| 603 |
|
| 604 |
+
# Udpate state.
|
| 605 |
+
st.session_state.selected_models = selected_models
|
| 606 |
+
st.session_state.selected_aggregator = selected_aggregator
|
| 607 |
+
|
| 608 |
+
# Render the chats.
|
| 609 |
response_columns = st.columns(3)
|
| 610 |
|
| 611 |
selected_models_to_streamlit_column_map = {
|
|
|
|
| 613 |
}
|
| 614 |
|
| 615 |
# Fetching and streaming responses from each selected model
|
| 616 |
+
for selected_model in st.session_state.selected_models:
|
| 617 |
with selected_models_to_streamlit_column_map[selected_model]:
|
| 618 |
st.write(get_ui_friendly_name(selected_model))
|
| 619 |
with st.chat_message(
|
|
|
|
| 632 |
user_prompt=user_prompt, llms=selected_models
|
| 633 |
)
|
| 634 |
|
|
|
|
|
|
|
|
|
|
| 635 |
# Fetching and streaming response from the aggregator
|
| 636 |
+
st.write(f"{get_ui_friendly_name(selected_aggregator)}")
|
| 637 |
with st.chat_message(
|
| 638 |
selected_aggregator,
|
| 639 |
avatar="img/council_icon.png",
|
|
|
|
| 647 |
message_placeholder.write_stream(aggregator_stream)
|
| 648 |
)
|
| 649 |
|
| 650 |
+
st.session_state.responses_collected = True
|
| 651 |
+
|
| 652 |
+
# Render chats generally?
|
| 653 |
+
if st.session_state.responses and not submit_button:
|
| 654 |
+
st.markdown("#### Responses")
|
| 655 |
+
|
| 656 |
+
response_columns = st.columns(3)
|
| 657 |
+
selected_models_to_streamlit_column_map = {
|
| 658 |
+
model: response_columns[i]
|
| 659 |
+
for i, model in enumerate(st.session_state.selected_models)
|
| 660 |
+
}
|
| 661 |
+
for response_model, response in st.session_state.responses.items():
|
| 662 |
+
st_column = selected_models_to_streamlit_column_map.get(
|
| 663 |
+
response_model, response_columns[0]
|
| 664 |
+
)
|
| 665 |
+
with st_column.chat_message(
|
| 666 |
+
response_model,
|
| 667 |
+
avatar=get_llm_avatar(response_model),
|
| 668 |
+
):
|
| 669 |
+
st.write(get_ui_friendly_name(response_model))
|
| 670 |
+
st.write(response)
|
| 671 |
|
| 672 |
# Judging.
|
| 673 |
+
if st.session_state.responses_collected:
|
| 674 |
+
st.markdown("#### Judging Configuration")
|
| 675 |
|
| 676 |
+
# Choose the type of assessment
|
| 677 |
+
assessment_type = st.radio(
|
| 678 |
+
"Select the type of assessment",
|
| 679 |
+
options=["Direct Assessment", "Pairwise Comparison"],
|
| 680 |
+
)
|
| 681 |
|
| 682 |
+
_, center_column, _ = st.columns([3, 5, 3])
|
| 683 |
|
| 684 |
+
# Depending on the assessment type, render different forms
|
| 685 |
+
if assessment_type == "Direct Assessment":
|
| 686 |
|
| 687 |
+
# Initialize session state for direct assessment.
|
| 688 |
+
if "direct_assessment_overall_score" not in st.session_state:
|
| 689 |
+
st.session_state["direct_assessment_overall_score"] = {}
|
| 690 |
+
if "direct_assessment_judging_df" not in st.session_state:
|
| 691 |
+
st.session_state["direct_assessment_judging_df"] = {}
|
| 692 |
+
for response_model in selected_models:
|
| 693 |
+
st.session_state["direct_assessment_judging_df"][
|
| 694 |
+
response_model
|
| 695 |
+
] = {}
|
| 696 |
+
# aggregator model
|
| 697 |
st.session_state["direct_assessment_judging_df"][
|
| 698 |
+
"agg__" + selected_aggregator
|
| 699 |
] = {}
|
| 700 |
+
if "direct_assessment_judging_responses" not in st.session_state:
|
| 701 |
+
st.session_state["direct_assessment_judging_responses"] = {}
|
| 702 |
+
for response_model in selected_models:
|
| 703 |
+
st.session_state["direct_assessment_judging_responses"][
|
| 704 |
+
response_model
|
| 705 |
+
] = {}
|
| 706 |
+
# aggregator model
|
| 707 |
st.session_state["direct_assessment_judging_responses"][
|
| 708 |
+
"agg__" + selected_aggregator
|
| 709 |
] = {}
|
| 710 |
+
if "direct_assessment_overall_scores" not in st.session_state:
|
| 711 |
+
st.session_state["direct_assessment_overall_scores"] = {}
|
| 712 |
+
for response_model in selected_models:
|
| 713 |
+
st.session_state["direct_assessment_overall_scores"][
|
| 714 |
+
response_model
|
| 715 |
+
] = {}
|
|
|
|
| 716 |
st.session_state["direct_assessment_overall_scores"][
|
| 717 |
+
"agg__" + selected_aggregator
|
| 718 |
] = {}
|
| 719 |
+
if "judging_status" not in st.session_state:
|
| 720 |
+
st.session_state["judging_status"] = "incomplete"
|
| 721 |
+
|
| 722 |
+
# Direct assessment prompt.
|
| 723 |
+
with center_column.expander("Direct Assessment Prompt"):
|
| 724 |
+
direct_assessment_prompt = st.text_area(
|
| 725 |
+
"Prompt for the Direct Assessment",
|
| 726 |
+
value=get_default_direct_assessment_prompt(
|
| 727 |
+
user_prompt=user_prompt
|
| 728 |
+
),
|
| 729 |
+
height=500,
|
| 730 |
+
key="direct_assessment_prompt",
|
| 731 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 732 |
|
| 733 |
+
# TODO: Add option to edit criteria list with a basic text field.
|
| 734 |
+
criteria_list = DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST
|
| 735 |
+
|
| 736 |
+
# Create DirectAssessment object when form is submitted
|
| 737 |
+
if center_column.button(
|
| 738 |
+
"Submit Direct Assessment", use_container_width=True
|
| 739 |
+
):
|
| 740 |
+
|
| 741 |
+
# Render the chats.
|
| 742 |
+
response_columns = st.columns(3)
|
| 743 |
+
selected_models_to_streamlit_column_map = {
|
| 744 |
+
model: response_columns[i]
|
| 745 |
+
for i, model in enumerate(selected_models)
|
| 746 |
+
}
|
| 747 |
+
for response_model, response in st.session_state[
|
| 748 |
+
"responses"
|
| 749 |
+
].items():
|
| 750 |
+
st_column = selected_models_to_streamlit_column_map.get(
|
| 751 |
+
response_model, response_columns[0]
|
| 752 |
+
)
|
| 753 |
+
with st_column:
|
| 754 |
+
with st.chat_message(
|
| 755 |
+
get_ui_friendly_name(response_model),
|
| 756 |
+
avatar=get_llm_avatar(response_model),
|
| 757 |
+
):
|
| 758 |
+
st.write(get_ui_friendly_name(response_model))
|
| 759 |
+
st.write(response)
|
| 760 |
|
| 761 |
+
# Submit direct asssessment.
|
| 762 |
+
responses_for_judging = st.session_state["responses"]
|
| 763 |
|
| 764 |
+
response_judging_columns = st.columns(3)
|
| 765 |
|
| 766 |
+
responses_for_judging_to_streamlit_column_map = {
|
| 767 |
+
model: response_judging_columns[i % 3]
|
| 768 |
+
for i, model in enumerate(responses_for_judging.keys())
|
| 769 |
+
}
|
| 770 |
|
| 771 |
+
# Get judging responses.
|
| 772 |
+
for response_model, response in responses_for_judging.items():
|
| 773 |
|
| 774 |
+
st_column = responses_for_judging_to_streamlit_column_map[
|
| 775 |
+
response_model
|
| 776 |
+
]
|
| 777 |
|
| 778 |
+
with st_column:
|
| 779 |
+
st.write(
|
| 780 |
+
f"Judging for {get_ui_friendly_name(response_model)}"
|
| 781 |
+
)
|
| 782 |
+
judging_prompt = get_direct_assessment_prompt(
|
| 783 |
+
direct_assessment_prompt=direct_assessment_prompt,
|
| 784 |
+
user_prompt=user_prompt,
|
| 785 |
+
response=response,
|
| 786 |
+
criteria_list=criteria_list,
|
| 787 |
+
options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
|
| 788 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 789 |
|
| 790 |
+
with st.expander("Final Judging Prompt"):
|
| 791 |
+
st.code(judging_prompt)
|
| 792 |
|
| 793 |
+
for judging_model in selected_models:
|
| 794 |
+
with st.expander(
|
| 795 |
+
get_ui_friendly_name(judging_model), expanded=False
|
|
|
|
|
|
|
|
|
|
|
|
|
| 796 |
):
|
| 797 |
+
with st.chat_message(
|
| 798 |
+
judging_model,
|
| 799 |
+
avatar=PROVIDER_TO_AVATAR_MAP[judging_model],
|
| 800 |
+
):
|
| 801 |
+
message_placeholder = st.empty()
|
| 802 |
+
judging_stream = get_llm_response_stream(
|
| 803 |
+
judging_model, judging_prompt
|
| 804 |
+
)
|
| 805 |
+
st.session_state[
|
| 806 |
+
"direct_assessment_judging_responses"
|
| 807 |
+
][response_model][
|
| 808 |
+
judging_model
|
| 809 |
+
] = message_placeholder.write_stream(
|
| 810 |
+
judging_stream
|
| 811 |
+
)
|
| 812 |
+
# When all of the judging is finished for the given response, get the actual
|
| 813 |
+
# values, parsed.
|
| 814 |
+
# TODO.
|
| 815 |
+
judging_responses = st.session_state[
|
| 816 |
+
"direct_assessment_judging_responses"
|
| 817 |
+
][response_model]
|
| 818 |
+
|
| 819 |
+
if not judging_responses:
|
| 820 |
+
st.error(f"No judging responses for {response_model}")
|
| 821 |
+
quit()
|
| 822 |
+
parse_judging_response_prompt = (
|
| 823 |
+
get_parse_judging_response_for_direct_assessment_prompt(
|
| 824 |
+
judging_responses,
|
| 825 |
+
criteria_list,
|
| 826 |
+
SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
|
| 827 |
+
)
|
| 828 |
+
)
|
| 829 |
+
# Issue the prompt to openai mini with structured outputs
|
| 830 |
+
parsed_judging_responses = parse_judging_responses(
|
| 831 |
+
parse_judging_response_prompt, judging_responses
|
| 832 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 833 |
|
|
|
|
| 834 |
st.session_state["direct_assessment_judging_df"][
|
| 835 |
response_model
|
| 836 |
+
] = create_dataframe_for_direct_assessment_judging_response(
|
| 837 |
+
parsed_judging_responses
|
| 838 |
+
)
|
| 839 |
|
| 840 |
+
plot_criteria_scores(
|
| 841 |
+
st.session_state["direct_assessment_judging_df"][
|
| 842 |
+
response_model
|
| 843 |
+
]
|
| 844 |
+
)
|
|
|
|
|
|
|
| 845 |
|
| 846 |
+
# Find the overall score by finding the overall score for each judge, and then averaging
|
| 847 |
+
# over all judges.
|
| 848 |
+
plot_per_judge_overall_scores(
|
| 849 |
+
st.session_state["direct_assessment_judging_df"][
|
| 850 |
+
response_model
|
| 851 |
+
]
|
| 852 |
+
)
|
|
|
|
|
|
|
| 853 |
|
| 854 |
+
grouped = (
|
| 855 |
+
st.session_state["direct_assessment_judging_df"][
|
| 856 |
+
response_model
|
| 857 |
+
]
|
| 858 |
+
.groupby(["judging_model"])
|
| 859 |
+
.agg({"score": ["mean"]})
|
| 860 |
+
.reset_index()
|
| 861 |
+
)
|
| 862 |
+
grouped.columns = ["judging_model", "overall_score"]
|
| 863 |
+
|
| 864 |
+
# Save the overall scores to the session state.
|
| 865 |
+
for record in grouped.to_dict(orient="records"):
|
| 866 |
+
st.session_state["direct_assessment_overall_scores"][
|
| 867 |
+
response_model
|
| 868 |
+
][record["judging_model"]] = record["overall_score"]
|
| 869 |
+
|
| 870 |
+
overall_score = grouped["overall_score"].mean()
|
| 871 |
+
controversy = grouped["overall_score"].std()
|
| 872 |
+
st.write(f"Overall Score: {overall_score:.2f}")
|
| 873 |
+
st.write(f"Controversy: {controversy:.2f}")
|
| 874 |
+
|
| 875 |
+
st.session_state["judging_status"] = "complete"
|
| 876 |
+
|
| 877 |
+
# Judging is complete.
|
| 878 |
+
# The session state now contains the overall scores for each response from each judge.
|
| 879 |
+
if st.session_state["judging_status"] == "complete":
|
| 880 |
+
st.write("#### Results")
|
| 881 |
+
|
| 882 |
+
overall_scores_df_raw = pd.DataFrame(
|
| 883 |
+
st.session_state["direct_assessment_overall_scores"]
|
| 884 |
+
).reset_index()
|
| 885 |
+
|
| 886 |
+
overall_scores_df = pd.melt(
|
| 887 |
+
overall_scores_df_raw,
|
| 888 |
+
id_vars=["index"],
|
| 889 |
+
var_name="response_model",
|
| 890 |
+
value_name="score",
|
| 891 |
+
).rename(columns={"index": "judging_model"})
|
| 892 |
+
|
| 893 |
+
# Print the overall winner.
|
| 894 |
+
overall_winner = overall_scores_df.loc[
|
| 895 |
+
overall_scores_df["score"].idxmax()
|
| 896 |
+
]
|
| 897 |
|
| 898 |
+
st.write(
|
| 899 |
+
f"**Overall Winner:** {get_ui_friendly_name(overall_winner['response_model'])}"
|
| 900 |
+
)
|
| 901 |
+
# Find how much the standard deviation overlaps with other models.
|
| 902 |
+
# Calculate separability.
|
| 903 |
+
# TODO.
|
| 904 |
+
st.write(f"**Confidence:** {overall_winner['score']:.2f}")
|
| 905 |
+
|
| 906 |
+
left_column, right_column = st.columns([1, 1])
|
| 907 |
+
with left_column:
|
| 908 |
+
plot_overall_scores(overall_scores_df)
|
| 909 |
+
|
| 910 |
+
with right_column:
|
| 911 |
+
# All overall scores.
|
| 912 |
+
overall_scores_df = overall_scores_df[
|
| 913 |
+
["response_model", "judging_model", "score"]
|
| 914 |
+
]
|
| 915 |
+
overall_scores_df["response_model"] = overall_scores_df[
|
| 916 |
+
"response_model"
|
| 917 |
+
].apply(get_ui_friendly_name)
|
| 918 |
+
overall_scores_df["judging_model"] = overall_scores_df[
|
| 919 |
+
"judging_model"
|
| 920 |
+
].apply(get_ui_friendly_name)
|
| 921 |
+
|
| 922 |
+
with st.expander("Overall scores from all judges"):
|
| 923 |
+
st.dataframe(overall_scores_df)
|
| 924 |
+
|
| 925 |
+
# All criteria scores.
|
| 926 |
+
with right_column:
|
| 927 |
+
all_scores_df = pd.DataFrame()
|
| 928 |
+
for response_model, score_df in st.session_state[
|
| 929 |
+
"direct_assessment_judging_df"
|
| 930 |
+
].items():
|
| 931 |
+
score_df["response_model"] = response_model
|
| 932 |
+
all_scores_df = pd.concat([all_scores_df, score_df])
|
| 933 |
+
all_scores_df = all_scores_df.reset_index()
|
| 934 |
+
all_scores_df = all_scores_df.drop(columns="index")
|
| 935 |
+
|
| 936 |
+
# Reorder the columns
|
| 937 |
+
all_scores_df = all_scores_df[
|
| 938 |
+
[
|
| 939 |
+
"response_model",
|
| 940 |
+
"judging_model",
|
| 941 |
+
"criteria",
|
| 942 |
+
"score",
|
| 943 |
+
"explanation",
|
| 944 |
+
]
|
| 945 |
+
]
|
| 946 |
+
all_scores_df["response_model"] = all_scores_df[
|
| 947 |
+
"response_model"
|
| 948 |
+
].apply(get_ui_friendly_name)
|
| 949 |
+
all_scores_df["judging_model"] = all_scores_df[
|
| 950 |
+
"judging_model"
|
| 951 |
+
].apply(get_ui_friendly_name)
|
| 952 |
+
|
| 953 |
+
with st.expander(
|
| 954 |
+
"Criteria-specific scores and explanations from all judges"
|
| 955 |
+
):
|
| 956 |
+
st.dataframe(all_scores_df)
|
| 957 |
+
|
| 958 |
+
elif assessment_type == "Pairwise Comparison":
|
| 959 |
+
pass
|
| 960 |
+
|
| 961 |
+
# Token usage.
|
| 962 |
+
with st.expander("Token Usage"):
|
| 963 |
+
st.write("Input tokens used.")
|
| 964 |
+
st.write(st.session_state.input_token_usage)
|
| 965 |
+
st.write(
|
| 966 |
+
f"Input Tokens Total: {sum(st.session_state.input_token_usage.values())}"
|
| 967 |
+
)
|
| 968 |
+
st.write("Output tokens used.")
|
| 969 |
+
st.write(st.session_state.output_token_usage)
|
| 970 |
+
st.write(
|
| 971 |
+
f"Output Tokens Total: {sum(st.session_state.output_token_usage.values())}"
|
| 972 |
+
)
|
| 973 |
|
| 974 |
else:
|
| 975 |
with cols[1]:
|
constants.py
CHANGED
|
@@ -1,18 +1,42 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
PROVIDER_TO_AVATAR_MAP = {
|
| 18 |
"openai://gpt-4o-mini": "",
|
|
@@ -34,9 +58,17 @@ LLM_TO_UI_NAME_MAP = {
|
|
| 34 |
"anthropic://claude-3-haiku-20240307": "Claude 3 Haiku",
|
| 35 |
}
|
| 36 |
|
| 37 |
-
|
| 38 |
-
AGGREGATORS = ["together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"]
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# Fix the aggregator step.
|
| 42 |
# Add a judging step.
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import dotenv
|
| 3 |
+
|
| 4 |
+
dotenv.load_dotenv()
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
if os.getenv("DEBUG_MODE") == "True":
|
| 8 |
+
LLM_COUNCIL_MEMBERS = {
|
| 9 |
+
"Smalls": [
|
| 10 |
+
"together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
| 11 |
+
"together://meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
| 12 |
+
# "anthropic://claude-3-haiku-20240307",
|
| 13 |
+
],
|
| 14 |
+
"Flagships": [
|
| 15 |
+
"together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
| 16 |
+
"together://meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
| 17 |
+
"anthropic://claude-3-haiku-20240307",
|
| 18 |
+
],
|
| 19 |
+
}
|
| 20 |
+
else:
|
| 21 |
+
LLM_COUNCIL_MEMBERS = {
|
| 22 |
+
"Smalls": [
|
| 23 |
+
"openai://gpt-4o-mini",
|
| 24 |
+
"together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
| 25 |
+
"together://meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
| 26 |
+
"vertex://gemini-1.5-flash-001",
|
| 27 |
+
"anthropic://claude-3-haiku-20240307",
|
| 28 |
+
],
|
| 29 |
+
"Flagships": [
|
| 30 |
+
"openai://gpt-4o",
|
| 31 |
+
"together://meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
| 32 |
+
"vertex://gemini-1.5-pro-002",
|
| 33 |
+
"anthropic://claude-3-5-sonnet",
|
| 34 |
+
],
|
| 35 |
+
"OpenAI": [
|
| 36 |
+
"openai://gpt-4o",
|
| 37 |
+
"openai://gpt-4o-mini",
|
| 38 |
+
],
|
| 39 |
+
}
|
| 40 |
|
| 41 |
PROVIDER_TO_AVATAR_MAP = {
|
| 42 |
"openai://gpt-4o-mini": "",
|
|
|
|
| 58 |
"anthropic://claude-3-haiku-20240307": "Claude 3 Haiku",
|
| 59 |
}
|
| 60 |
|
| 61 |
+
if os.getenv("DEBUG_MODE") == "True":
|
| 62 |
+
AGGREGATORS = ["together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"]
|
| 63 |
+
else:
|
| 64 |
+
AGGREGATORS = [
|
| 65 |
+
"anthropic://claude-3-haiku-20240307",
|
| 66 |
+
"together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
| 67 |
+
"together://meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
| 68 |
+
"together://meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
| 69 |
+
"openai://gpt-4o",
|
| 70 |
+
"openai://gpt-4o-mini",
|
| 71 |
+
]
|
| 72 |
|
| 73 |
# Fix the aggregator step.
|
| 74 |
# Add a judging step.
|
img/qwen.webp
ADDED
|