Spaces:
Paused
Paused
File size: 26,869 Bytes
3647b02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use client';
import { useState, useRef } from 'react';
import PromptBar from '@/components/PromptBar';
import ResearchProgressList, { ResearchEventType } from '@/components/ResearchProgressList';
import ReportViewer from '@/components/ReportViewer';
import ResearchStrategyEditor from '@/components/ResearchStrategyEditor';
import { ApplicationState } from '@/types/ApplicationState';
import { v4 as uuidv4 } from 'uuid';
import config, { getApiEndpoint } from '@/config';
// Define interfaces for API data structures
interface ApiEventData {
event: {
type: string;
description?: string;
report?: string;
deltaSearchCount?: number;
deltaQueryCount?: number;
hidden?: boolean;
};
session_key?: string;
}
interface ApiRequestBody {
prompt?: string;
session_key?: string;
strategy_id?: string;
strategy_content?: string;
dry: boolean;
start_from: 'research' | 'reporting';
}
export default function Home() {
const [state, setState] = useState<ApplicationState>({
type: 'idle',
sessionKey: "",
researchStartTimestamp: 0,
researchEndTimestamp: 0,
searchCount: 0,
queryCount: 0,
finalizationStartTimestamp: 0,
finalizationEndTimestamp: 0,
events: []
});
const [reportContent, setReportContent] = useState<string>('');
const [editedStrategyId, setEditedStrategyId] = useState('');
const [strategyContents, setStrategyContents] = useState<Record<string, string>>(initialStrategyContents);
const abortControllerRef = useRef<AbortController | null>(null);
// Shared API communication function with proper typing
const communicateWithAPI = async (
requestBody: ApiRequestBody,
initialStateUpdate: (prev: ApplicationState) => ApplicationState,
eventHandlers: {
onStarted?: (data: ApiEventData, prev: ApplicationState) => Partial<ApplicationState>,
onCompleted?: (data: ApiEventData, prev: ApplicationState) => Partial<ApplicationState>,
onCancelled?: (data: ApiEventData, prev: ApplicationState) => Partial<ApplicationState>,
onReportBuilding?: (data: ApiEventData, prev: ApplicationState) => Partial<ApplicationState>,
onReportDone?: (data: ApiEventData, prev: ApplicationState) => Partial<ApplicationState>,
onOtherEvent?: (data: ApiEventData, prev: ApplicationState) => Partial<ApplicationState>,
onServerError?: (data: ApiEventData, prev: ApplicationState) => Partial<ApplicationState>,
}
) => {
// Create new AbortController for this request
abortControllerRef.current = new AbortController();
try {
const response = await fetch(getApiEndpoint(), {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify(requestBody),
signal: abortControllerRef.current.signal
});
if (!response.ok) {
const errorData = await response.json();
throw new Error(errorData.detail || 'Failed to communicate with server');
}
if (!response.body) {
throw new Error('No response body received');
}
// Apply initial state update
setState(initialStateUpdate);
const reader = response.body.getReader();
const decoder = new TextDecoder();
let buffer = '';
while (true) {
const { done, value } = await reader.read();
if (done) break;
buffer += decoder.decode(value, { stream: true });
const lines = buffer.split('\n');
buffer = lines.pop() || ''; // Keep the last incomplete line in the buffer
for (const line of lines) {
if (line.trim()) {
try {
const data = JSON.parse(line) as ApiEventData;
if (data.event.type === 'started' && eventHandlers.onStarted) {
setState(prev => ({
...prev,
...eventHandlers.onStarted?.(data, prev)
}) as ApplicationState);
} else if (data.event.type === 'completed' && eventHandlers.onCompleted) {
setState(prev => ({
...prev,
...eventHandlers.onCompleted?.(data, prev)
}) as ApplicationState);
if (abortControllerRef.current) {
abortControllerRef.current = null;
}
break;
} else if (data.event.type === 'cancelled' && eventHandlers.onCancelled) {
setState(prev => ({
...prev,
...eventHandlers.onCancelled?.(data, prev)
}) as ApplicationState);
if (abortControllerRef.current) {
abortControllerRef.current = null;
}
break;
} else if (data.event.type === 'report_building' && eventHandlers.onReportBuilding) {
setState(prev => ({
...prev,
...eventHandlers.onReportBuilding?.(data, prev)
}) as ApplicationState);
} else if (data.event.type === 'report_done' && eventHandlers.onReportDone) {
// Save the report content if available
if (data.event.report) {
setReportContent(data.event.report);
}
setState(prev => ({
...prev,
...eventHandlers.onReportDone?.(data, prev)
}) as ApplicationState);
if (abortControllerRef.current) {
abortControllerRef.current = null;
}
break;
} else if (data.event.type === 'error' && eventHandlers.onServerError) {
console.error('Server error:', data);
setState(prev => ({
...prev,
...eventHandlers.onServerError?.(data, prev)
}) as ApplicationState);
break;
} else if (eventHandlers.onOtherEvent) {
setState(prev => ({
...prev,
...eventHandlers.onOtherEvent?.(data, prev)
}) as ApplicationState);
}
} catch (e) {
console.error('Failed to parse event:', e);
}
}
}
}
} catch (error) {
if (error instanceof Error) {
if (error.name === 'AbortError') {
console.log('AbortError -- normal interruption');
return;
}
handleError(error.message);
} else {
handleError('An unknown error occurred');
}
}
};
const handleStartResearch = async (query: string, strategyId: string) => {
if (state.type === 'researching' || state.type === 'finalizing') return;
await communicateWithAPI(
{
prompt: query.trim(),
strategy_id: strategyId,
strategy_content: strategyContents[strategyId] || '',
dry: config.runtime.dryRun,
start_from: 'research'
},
(prev) => ({
type: 'researching',
sessionKey: prev.sessionKey,
researchStartTimestamp: Date.now(),
researchEndTimestamp: 0,
searchCount: 0,
queryCount: 1,
finalizationStartTimestamp: 0,
finalizationEndTimestamp: 0,
events: []
}),
{
onStarted: (data, prev) => ({
type: 'researching',
researchStartTimestamp: Date.now(),
researchEndTimestamp: 0,
sessionKey: data.session_key || prev.sessionKey || "",
searchCount: 0,
queryCount: 0,
finalizationStartTimestamp: 0,
finalizationEndTimestamp: 0,
events: []
}),
onCompleted: (data, prev) => ({
type: 'done',
sessionKey: data.session_key || prev.sessionKey || "",
finalizationEndTimestamp: Date.now()
}),
onCancelled: (data, prev) => ({
type: 'stopped',
sessionKey: data.session_key || prev.sessionKey || "",
researchEndTimestamp: prev.finalizationStartTimestamp > 0 ? prev.researchEndTimestamp : Date.now(),
finalizationEndTimestamp: prev.finalizationStartTimestamp > 0 ? Date.now() : 0
}),
onReportBuilding: (data, prev) => ({
type: 'finalizing',
researchEndTimestamp: prev.researchEndTimestamp > 0 ? prev.researchEndTimestamp : Date.now(),
finalizationStartTimestamp: Date.now(),
finalizationEndTimestamp: 0,
events: data.event.hidden ? prev.events : [
...prev.events,
{
id: uuidv4(),
type: (data.event.type || 'search') as ResearchEventType,
description: data.event.description || 'No description given',
timestamp: Date.now(),
},
],
searchCount: prev.searchCount + (data.event.deltaSearchCount || 0),
queryCount: prev.queryCount + (data.event.deltaQueryCount || 0)
}),
onReportDone: (data, prev) => ({
type: 'done',
sessionKey: data.session_key || prev.sessionKey || "",
finalizationEndTimestamp: Date.now()
}),
onServerError: (data, prev) => ({
type: 'error',
error: data.event.description || 'Unknown error',
events: data.event.hidden ? prev.events : [
...prev.events,
{
id: uuidv4(),
type: 'error',
description: data.event.description || 'Unknown error',
timestamp: Date.now(),
},
],
searchCount: prev.searchCount + (data.event.deltaSearchCount || 0),
queryCount: prev.queryCount + (data.event.deltaQueryCount || 0)
}),
onOtherEvent: (data, prev) => ({
sessionKey: data.session_key || prev.sessionKey || "",
events: data.event.hidden ? prev.events : [
...prev.events,
{
id: uuidv4(),
type: (data.event.type || 'search') as ResearchEventType,
description: data.event.description || 'No description given',
timestamp: Date.now(),
},
],
searchCount: prev.searchCount + (data.event.deltaSearchCount || 0),
queryCount: prev.queryCount + (data.event.deltaQueryCount || 0)
})
}
);
};
const handleStartFinalizing = async () => {
if (state.type === 'researching' || state.type === 'finalizing') return;
await communicateWithAPI(
{
session_key: state.sessionKey,
dry: config.runtime.dryRun,
start_from: 'reporting'
},
(prev) => ({
...prev,
type: 'finalizing',
sessionKey: prev.sessionKey || "",
finalizationStartTimestamp: Date.now(),
finalizationEndTimestamp: 0
}),
{
onCompleted: (data, prev) => ({
type: 'done',
sessionKey: data.session_key || prev.sessionKey || "",
finalizationEndTimestamp: Date.now()
}),
onCancelled: (data, prev) => ({
type: 'stopped',
sessionKey: data.session_key || prev.sessionKey || "",
finalizationEndTimestamp: Date.now()
}),
onServerError: (data, prev) => ({
type: 'error',
error: data.event.description || 'Unknown error',
events: data.event.hidden ? prev.events : [
...prev.events,
{
id: uuidv4(),
type: 'error',
description: data.event.description || 'Unknown error',
timestamp: Date.now(),
},
],
}),
onOtherEvent: (data, prev) => ({
events: data.event.hidden || data.event.type === '__final' ? prev.events : [
...prev.events,
{
id: uuidv4(),
type: (data.event.type || 'search') as ResearchEventType,
description: data.event.description || 'No description given',
timestamp: Date.now(),
deltaSearchCount: data.event.deltaSearchCount || 0,
deltaQueryCount: data.event.deltaQueryCount || 0,
},
]
})
}
);
};
const handleStop = () => {
if (state.type !== 'researching' && state.type !== 'finalizing') return;
// Abort the ongoing request if it exists
if (abortControllerRef.current) {
abortControllerRef.current.abort();
abortControllerRef.current = null;
}
setState(prev => ({
type: 'stopped',
sessionKey: prev.sessionKey,
researchStartTimestamp: prev.researchStartTimestamp,
researchEndTimestamp: prev.researchEndTimestamp > 0 ? prev.researchEndTimestamp : Date.now(),
searchCount: prev.searchCount,
queryCount: prev.queryCount,
finalizationStartTimestamp: prev.finalizationStartTimestamp,
finalizationEndTimestamp: prev.finalizationStartTimestamp > 0 ? Date.now() : 0,
events: prev.events,
}));
};
const handleClear = () => {
setReportContent('');
setState({
type: 'idle',
sessionKey: "",
researchStartTimestamp: 0,
researchEndTimestamp: 0,
searchCount: 0,
queryCount: 0,
finalizationStartTimestamp: 0,
finalizationEndTimestamp: 0,
events: []
});
};
const handleViewError = () => {
// TODO: Implement scroll to error functionality
console.log('Scrolling to error...');
};
const handleError = (error: string) => {
setState(prev => ({
...prev,
type: 'error',
error: error
}));
};
const handleStartEditingStrategy = (strategyId: string) => {
setEditedStrategyId(strategyId);
};
const handleStrategyAccept = (editedStrategyContent: string) => {
setStrategyContents(prev => ({
...prev,
[editedStrategyId]: editedStrategyContent
}));
setEditedStrategyId('');
console.log('Strategy updated:', editedStrategyId, editedStrategyContent);
};
const handleStrategyRevert = () => {
setEditedStrategyId('');
console.log('Strategy reverted:', strategyContents[editedStrategyId]);
};
return (
<div className="grid grid-rows-[20px_1fr_20px] items-center justify-items-center min-h-screen p-8 pb-20 gap-16 sm:p-20 font-[family-name:var(--font-geist-sans)]">
<main className="row-start-2 flex flex-col items-center justify-center gap-8 w-full">
<div className="w-[min(90%,max(200pt,40%))] min-w-[30rem] flex flex-col items-center justify-center gap-8">
<h1 className="text-4xl font-bold">NVR Universal Deep Research</h1>
<PromptBar
onResearch={handleStartResearch}
onEditStrategy={handleStartEditingStrategy}
state={state}
isAStrategyBeingEdited={editedStrategyId !== ''}
/>
{editedStrategyId !== '' && (
<ResearchStrategyEditor
editedStrategyInitialContent={strategyContents[editedStrategyId] || ''}
onAccept={handleStrategyAccept}
onRevert={handleStrategyRevert}
state={state}
/>
)}
<ResearchProgressList
state={state}
onStop={handleStop}
onClear={handleClear}
onFinalize={handleStartFinalizing}
onViewError={handleViewError}
/>
</div>
{state.type === 'done' && reportContent !== '' && (
<div className="w-[min(90%,70%)]">
<ReportViewer report={reportContent} isVisible={true} />
</div>
)}
</main>
</div>
);
}
const initialStrategyContents = {
default: ``,
minimal: `1. Send a notification of type "prompt_received" with description saying what PROMPT has been received, e.g. "Received research request: {PROMPT}"
2. Send a notification of type "prompt_analysis_started", with description indicating that we are now analyzing the research request.
3. Take the PROMPT and ask a language model to produce 3 search phrases that could help with retrieving results from search engine for the purpose of compiling a report the user asks for in the PROMPT. The search phrases should be simple and objective, e.g. "important events 1972" or "energy consumption composition in India today". Use a long prompt for the model that describes in detail what is supposed to be performed and the expected output format. Instruct the model to return the search phrases on one line each. Tell the model not to output any other text -- just the newline-separated phrases. Then, parse the output of the language model line by line and save the resulting search phrases as "phrases" for further research, skipping over empty lines.
4. Send a notification of type "prompt_analysis_completed", with a description saying as much.
4.1 Send a notification of type "task_analysis_completed", informing the user that the search plan has been completed and informing them how many search phrases will be invoked, e.g. "Search planning completed. Will be searching through {len(topics)}+ terms."
5. For each phrase in phrases output by step 3., perform the following:
- Send a notification of type "search_started", with the description indicating what search phrase we are using for the search, e.g. "Searching for phrase '{phrase}'"
- Perform search with the phrase.
- Once the search returns some results, append their contents to CONTEXT one by one, separating them by double newlines from what is already present in the CONTEXT.
- Send a notification of type "search_result_processing_completed", indicating in its description that the search results for term {term} have been processed.
6. Send a notification to the user with type "research_completed", indicating that the "Research phase is now completed.".
7. Send a notification with type "report_building", with the description indicating that the report is being built.
8. Take CONTEXT. Call the language model, instructing it to take CONTEXT (to be appended into the LM call) and produce a deep research report on the topic requested in PROMPT. The resulting report should go into detail wherever possible, rely only on the information available in CONTEXT, address the instruction given in the PROMPT, and be formatted in Markdown. This is to be communicated in the prompt. Do not shy away from using long, detailed and descriptive prompts! Tell the model not to output any other text, just the report. The result produced by the language model is to be called REPORT.
9. Send a notification with type "report_done", indicating that the report has been completed. Add "report" as a field containing the REPORT to be an additional payload to the notification.
`,
expansive: `1. Send a notification of type "prompt_received" with description saying what PROMPT has been received, e.g. "Received research request: {PROMPT}"
2. Send a notification of type "prompt_analysis_started", with description indicating that we are now analyzing the research request.
3. Take the PROMPT and ask a language model to produce 2 topics that could be useful to investigate in order to produce the report requested in the PROMPT. The topics should be simple and sufficiently different from each other, e.g. "important events of 1972" or "energy consumption composition in India today". Instruct the model to return the topics on one line each. Tell the model not to output any other text. Then, parse the output of the language model line by line and save the resulting topics as "topics" for further research.
4. Send a notification of type "prompt_analysis_completed", with description saying as much.
5. Throughout the search and report generation process, we shall rely on a single storage of context. Lets refer to it just as to "context" from now on. Initially, there is no context.
6. For each topic in topics, perform the following
6.1. Take the PROMPT and the topic, and ask a language model to produce up to 2 search phrases that could be useful to collect information on the particular topic. Each search phrase should be simple and directly relate to the topic e.g., for topic "important events of 1972", the search phrases could be "what happened in 1972", "1972 events worldwide", "important events 1971-1973". For topic "energy consumption composition in India today", the search phrases could be "renewable energy production in India today", "fossil fuel energy reliance India", "energy security India". Call the returned phrases simply "phrases" from now on.
6.2. For each phrase in phrases output by step 6.1., perform the following:
- Send a notification of type "search_started", with the description indicating what search phrase we are using for the search, e.g. "Searching for phrase '{phrase}'"
- Perform search with the phrase. Once the search returns some results, append their contents to context one by one, separating them by double newlines from what is already present in the context.
- Send a notification of type "search_result_processing_completed", indicating in its description that the search results for term {term} have been processed.
7. Send a notification with type "report_building", with the description indicating that the report is being built.
8. Take CONTEXT. Call the language model, instructing it to take context (to be appended into the LM call) and produce a deep research report on the topic requested in PROMPT. The resulting report should go into detail wherever possible, rely only on the information available in context, address the instruction given in the PROMPT, and be formatted in Markdown. This is to be communicated in the prompt. Do not shy away from using long, detailed and descriptive prompts! Tell the model not to output any other text, just the report. The result produced by the language model is to be called REPORT.
9. Send a notification with type "report_done", indicating that the report has been completed. Add "report" as a field containing the REPORT to be an additional payload to the notification.
`,
intensive: `1. Send a notification of type "prompt_received" with description saying what PROMPT has been received, e.g. "Received research request: {PROMPT}"
2. Send a notification of type "prompt_analysis_started", with description indicating that we are now analyzing the research request.
3. Throughout the search and report generation process, we shall rely on two storages of context. One shall be called "supercontext" and contain all contexts of all resources read throughout the search phase. The other one shall be called "subcontext" and pertain to only one interation of the search process. At the beginning, both the supercontext and subcontext are empty.
4. Take the PROMPT and ask a language model to produce 2 search phrases that could help with retrieving results from search engine for the purpose of compiling a report the user asks for in the PROMPT. The search phrases should be simple and objective, e.g. "important events 1972" or "energy consumption composition in India today". Use a long prompt for the model that describes in detail what is supposed to be performed and the expected output format. Instruct the model to return the search phrases on one line each. Tell the model not to output any other text -- just the newline-separated phrases. Then, parse the output of the language model line by line and save the resulting search phrases as "phrases" for further research, skipping over empty lines.
4.1. Send a notification of type "prompt_analysis_completed", with a description saying as much.
5. Perform the following 2 times:
- Clear the subcontext.
- For each phrase in phrases, perform the following:
* Send a notification of type "search_started", with the description indicating what search phrase we are using for the search, e.g. "Searching for phrase '{phrase}'"
* Perform search with the phrase. Once the search returns some results, append their contents to subcontext one by one, separating them by double newlines from what is already present in the subcontext.
* Send a notification of type "search_result_processing_completed", indicating in its description that the search results for term {term} have been processed.
- Once the subcontext has been put together by aggregating the contributions due to all search phrases, ask a language model, given the subcontext and the PROMPT given by the user, to come up with 2 more phrases (distinct to phrases that are already in phrases) on the basis of the new subcontext being available. Again, the search phrases should be simple and objective, e.g. "important events 1972" or "energy consumption composition in India today". Use a long prompt for the model that describes in detail what is supposed to be performed and the expected output format. Instruct the model to return the search phrases on one line each. Tell the model not to output any other text -- just the newline-separated phrases. Then, parse the output of the language model line by line and save the resulting search phrases as "phrases" for further research, skipping over empty lines. Clear all the old phrases and let the newly returned phrases by the phrases for the next iteration of this loop.
6. Send a notification with type "report_building", with the description indicating that the report is being built.
7. Take CONTEXT. Call the language model, instructing it to take CONTEXT (to be appended into the LM call) and produce a deep research report on the topic requested in PROMPT. The resulting report should go into detail wherever possible, rely only on the information available in CONTEXT, address the instruction given in the PROMPT, and be formatted in Markdown. This is to be communicated in the prompt. Do not shy away from using long, detailed and descriptive prompts! Tell the model not to output any other text, just the report. The result produced by the language model is to be called REPORT.
8. Send a notification with type "report_done", indicating that the report has been completed. Add "report" as a field containing the REPORT to be an additional payload to the notification.
`,
} |