Spaces:
Sleeping
Sleeping
| import modal | |
| from modal import App, Volume, Image | |
| # Setup | |
| app = modal.App("llama") | |
| image = Image.debian_slim().pip_install("torch", "transformers", "bitsandbytes", "accelerate") | |
| secrets = [modal.Secret.from_name("hf-secret")] | |
| GPU = "T4" | |
| MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B" # "google/gemma-2-2b" | |
| def generate(prompt: str) -> str: | |
| import os | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed | |
| # Quant Config | |
| quant_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_compute_dtype=torch.bfloat16, | |
| bnb_4bit_quant_type="nf4" | |
| ) | |
| # Load model and tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| tokenizer.padding_side = "right" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| quantization_config=quant_config, | |
| device_map="auto" | |
| ) | |
| set_seed(42) | |
| inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda") | |
| attention_mask = torch.ones(inputs.shape, device="cuda") | |
| outputs = model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1) | |
| return tokenizer.decode(outputs[0]) | |