Spaces:
Sleeping
Sleeping
File size: 22,782 Bytes
b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 97397b1 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 11917ec 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 b492e55 329f1e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
"""
🖼️→📝 Chest X-ray Report Generation + Attention Visualizer + Classification
- Loads generation model (complete_model.safetensor)
- Loads classification model (classification.pth)
- Generates report and visualizes attention.
- Lists disease probabilities.
"""
import os
import re
import random
from typing import List, Tuple, Optional
import logging
import gradio as gr
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
from safetensors.torch import load_model
from transformers import AutoModel, AutoImageProcessor
# Optional: nicer colormap
try:
import matplotlib as mpl
_HAS_MPL = True
_COLORMAP = mpl.colormaps.get_cmap("magma")
except Exception:
_HAS_MPL = False
_COLORMAP = None
# ========= Your utilities & model =========
from utils.processing import image_transform, pil_from_path
from utils.complete_model import create_complete_model
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ==============================================================================
# 1. CLASSIFIER LOGIC (Added)
# ==============================================================================
class EmbeddingClassifier(nn.Module):
def __init__(self, embedding_dim, num_classes, custom_dims=(512, 256, 256),
activation="gelu", dropout=0.05, bn=False, use_layernorm=True):
super().__init__()
layers = []
layers.append(nn.Linear(embedding_dim, custom_dims[0]))
if use_layernorm: layers.append(nn.LayerNorm(custom_dims[0]))
elif bn: layers.append(nn.BatchNorm1d(custom_dims[0]))
layers.append(nn.GELU() if activation.lower() == "gelu" else nn.ReLU())
if dropout > 0: layers.append(nn.Dropout(dropout))
for i in range(len(custom_dims) - 1):
layers.append(nn.Linear(custom_dims[i], custom_dims[i + 1]))
if use_layernorm: layers.append(nn.LayerNorm(custom_dims[i + 1]))
elif bn: layers.append(nn.BatchNorm1d(custom_dims[i + 1]))
layers.append(nn.GELU() if activation.lower() == "gelu" else nn.ReLU())
if dropout > 0: layers.append(nn.Dropout(dropout))
layers.append(nn.Linear(custom_dims[-1], num_classes))
self.classifier = nn.Sequential(*layers)
def forward(self, embeddings):
return self.classifier(embeddings)
class ChestXrayPredictor:
def __init__(self, base_model, classifier, processor, label_cols, device):
self.base_model = base_model
self.classifier = classifier
self.processor = processor
self.label_cols = label_cols
self.device = device
self.base_model.eval()
self.classifier.eval()
def predict(self, image_source):
try:
if isinstance(image_source, str):
image = Image.open(image_source).convert('RGB')
else:
image = image_source.convert('RGB')
inputs = self.processor(images=image, return_tensors="pt")
pixel_values = inputs['pixel_values'].to(self.device)
with torch.no_grad():
outputs = self.base_model(pixel_values=pixel_values)
if hasattr(outputs, 'last_hidden_state'):
embeddings = outputs.last_hidden_state.mean(dim=1)
else:
embeddings = outputs[0].mean(dim=1)
logits = self.classifier(embeddings)
probs = torch.sigmoid(logits).cpu().numpy()[0].tolist()
return {label: prob for label, prob in zip(self.label_cols, probs)}
except Exception as e:
print(f"Prediction Error: {e}")
return {}
def create_classifier(checkpoint_path, model_id="facebook/dinov3-vits16-pretrain-lvd1689m", device=None):
device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Loading Classifier from {checkpoint_path}...")
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
label_cols = checkpoint.get('label_cols', [
"Cardiomegaly", "Consolidation", "Edema",
"Atelectasis", "Pleural Effusion", "No Findings"
])
base_model = AutoModel.from_pretrained(model_id).to(device)
if 'base_model_state_dict' in checkpoint:
base_model.load_state_dict(checkpoint['base_model_state_dict'])
processor = AutoImageProcessor.from_pretrained(model_id)
# Detect dims
with torch.no_grad():
dummy = torch.randn(1, 3, 224, 224).to(device)
out = base_model(pixel_values=dummy)
embedding_dim = out.last_hidden_state.shape[-1]
# Rebuild MLP
model_state = checkpoint['model_state_dict']
linear_layers = []
for key, val in model_state.items():
if 'classifier' in key and key.endswith('.weight') and len(val.shape) == 2:
match = re.search(r'classifier\.(\d+)\.weight', key)
if match:
linear_layers.append((int(match.group(1)), val.shape[1], val.shape[0]))
linear_layers.sort(key=lambda x: x[0])
num_classes = linear_layers[-1][2]
hidden_dims = tuple([x[2] for x in linear_layers[:-1]])
uses_bn = any('running_mean' in k for k in model_state.keys())
has_norm = any(k.endswith('.weight') and len(model_state[k].shape) == 1 for k in model_state.keys() if 'classifier' in k)
classifier = EmbeddingClassifier(embedding_dim, num_classes, custom_dims=hidden_dims, bn=uses_bn, use_layernorm=(has_norm and not uses_bn))
classifier.load_state_dict(model_state)
classifier.to(device)
return ChestXrayPredictor(base_model, classifier, processor, label_cols, device)
# ==============================================================================
# 2. LOAD MODELS
# ==============================================================================
# A. Load Generator
print("Loading Generation Model...")
model = create_complete_model(device=DEVICE, attention_implementation="eager")
SAFETENSOR_PATH = "complete_model.safetensor"
try:
load_model(model, SAFETENSOR_PATH)
except Exception as e:
print(f"Error loading generation model: {e}")
model.eval()
# B. Load Classifier
print("Loading Classification Model...")
CLASSIFIER_PATH = "classification.pth"
classifier_model = None
try:
if os.path.exists(CLASSIFIER_PATH):
classifier_model = create_classifier(CLASSIFIER_PATH, device=DEVICE)
print("✅ Classifier loaded.")
else:
print(f"⚠️ Classifier not found at {CLASSIFIER_PATH}")
except Exception as e:
print(f"⚠️ Error loading classifier: {e}")
# --- Tokenizer setup ---
tokenizer = getattr(model, "tokenizer", None)
if tokenizer is None:
raise ValueError("Expected `model.tokenizer` to exist.")
pad_id = getattr(tokenizer, "pad_token_id", None)
eos_id = getattr(tokenizer, "eos_token_id", None)
needs_resize = False
if pad_id is None or (eos_id is not None and pad_id == eos_id):
tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
needs_resize = True
if needs_resize:
resize_fns = [
getattr(getattr(model, "decoder", None), "resize_token_embeddings", None),
getattr(model, "resize_token_embeddings", None),
]
for fn in resize_fns:
if callable(fn):
try:
fn(len(tokenizer))
break
except Exception:
pass
WORD_RE = re.compile(r"\w+(?:'\w+)?|[^\w\s]")
# ========= Logic =========
def model_heads_layers():
def _get(obj, *names, default=None):
for n in names:
if obj is None: return default
if hasattr(obj, n): return int(getattr(obj, n))
return default
cfg_candidates = [
getattr(model, "config", None),
getattr(getattr(model, "decoder", None), "config", None),
getattr(getattr(model, "lm_head", None), "config", None),
]
L = H = None
for cfg in cfg_candidates:
if L is None: L = _get(cfg, "num_hidden_layers", "n_layer")
if H is None: H = _get(cfg, "num_attention_heads", "n_head")
return max(1, L or 12), max(1, H or 12)
def get_attention_for_token_layer(attentions, token_index, layer_index, batch_index=0, head_index=0, mean_across_layers=True, mean_across_heads=True):
token_attention = attentions[token_index]
if mean_across_layers:
layer_attention = torch.stack(token_attention).mean(dim=0)
else:
layer_attention = token_attention[int(layer_index)]
batch_attention = layer_attention[int(batch_index)]
if mean_across_heads:
head_attention = batch_attention.mean(dim=0)
else:
head_attention = batch_attention[int(head_index)]
return head_attention.squeeze(0)
def _words_and_map_from_tokens_simple(token_ids: List[int]) -> Tuple[List[str], List[int]]:
if not token_ids: return [], []
toks = tokenizer.convert_ids_to_tokens(token_ids)
detok = tokenizer.convert_tokens_to_string(toks)
matches = list(re.finditer(WORD_RE, detok))
words = [m.group(0) for m in matches]
ends = [m.span()[1] for m in matches]
word2tok: List[int] = []
for we in ends:
prefix_ids = tokenizer.encode(detok[:we], add_special_tokens=False)
if not prefix_ids:
word2tok.append(0)
continue
last_idx = len(prefix_ids) - 1
last_idx = max(0, min(last_idx, len(token_ids) - 1))
word2tok.append(last_idx)
return words, word2tok
def _strip_trailing_special(ids: List[int]) -> List[int]:
specials = set(getattr(tokenizer, "all_special_ids", []) or [])
j = len(ids)
while j > 0 and ids[j - 1] in specials:
j -= 1
return ids[:j]
def generate_word_visualization_gen_only(words_gen, word_ends_rel, gen_attn_values, selected_token_rel_idx):
if not words_gen or gen_attn_values is None or len(gen_attn_values) == 0:
return "<div style='width:100%;'>No text attention values.</div>"
starts = []
for i, end in enumerate(word_ends_rel):
if i == 0: starts.append(0)
else: starts.append(min(word_ends_rel[i - 1] + 1, end))
word_scores = []
T = len(gen_attn_values)
for i, end in enumerate(word_ends_rel):
start = starts[i]
if start > end: start = end
s = max(0, min(start, T - 1))
e = max(0, min(end, T - 1))
if e < s: s, e = e, s
word_scores.append(float(gen_attn_values[s:e + 1].sum()))
max_attn = max(0.1, float(max(word_scores)) if word_scores else 0.0)
selected_word_idx = None
for i, end in enumerate(word_ends_rel):
if selected_token_rel_idx <= end:
selected_word_idx = i
break
if selected_word_idx is None and word_ends_rel: selected_word_idx = len(word_ends_rel) - 1
spans = []
for i, w in enumerate(words_gen):
alpha = min(1.0, word_scores[i] / max_attn) if max_attn > 0 else 0.0
bg = f"rgba(66,133,244,{alpha:.3f})"
border = "2px solid #fff" if i == selected_word_idx else "1px solid transparent"
spans.append(f"<span style='display:inline-block;background:{bg};border:{border};border-radius:6px;padding:2px 6px;margin:2px 4px 4px 0;color:#fff;'>{w}</span>")
return f"<div style='width:100%;'><div style='background:#444;border:1px solid #eee;border-radius:8px;padding:10px;'><div style='white-space:normal;line-height:1.8;'>{''.join(spans)}</div></div></div>"
def _attention_to_heatmap_uint8(attn_1d: np.ndarray, img_token_len: int = 1024, side: int = 32) -> np.ndarray:
if attn_1d.shape[0] < img_token_len:
img_part = np.zeros(img_token_len, dtype=float)
img_part[: attn_1d.shape[0]] = attn_1d
else:
img_part = attn_1d[:img_token_len]
mn, mx = float(img_part.min()), float(img_part.max())
denom = (mx - mn) if (mx - mn) > 1e-12 else 1.0
norm = (img_part - mn) / denom
return (norm.reshape(side, side) * 255.0).astype(np.uint8)
def _colorize_heatmap(heatmap_u8: np.ndarray) -> Image.Image:
if _HAS_MPL and _COLORMAP is not None:
colored = (_COLORMAP(heatmap_u8.astype(np.float32) / 255.0)[:, :, :3] * 255.0).astype(np.uint8)
return Image.fromarray(colored)
else:
g = heatmap_u8.astype(np.float32) / 255.0
r = (g * 255.0).clip(0, 255).astype(np.uint8)
g2 = (np.sqrt(g) * 255.0).clip(0, 255).astype(np.uint8)
b = np.zeros_like(r, dtype=np.uint8)
rgb = np.stack([r, g2, b], axis=-1)
return Image.fromarray(rgb)
def _resize_like(img: Image.Image, target_size: Tuple[int, int]) -> Image.Image:
return img.resize(target_size, resample=Image.BILINEAR)
def _make_overlay(orig: Image.Image, heatmap_rgb: Image.Image, alpha: float = 0.35) -> Image.Image:
if heatmap_rgb.size != orig.size:
heatmap_rgb = _resize_like(heatmap_rgb, orig.size)
base = orig.convert("RGBA")
overlay = heatmap_rgb.convert("RGBA")
r, g, b = overlay.split()[:3]
a = Image.new("L", overlay.size, int(alpha * 255))
overlay = Image.merge("RGBA", (r, g, b, a))
return Image.alpha_composite(base, overlay).convert("RGB")
def _prepare_image_tensor(pil_img, img_size=512):
tfm = image_transform(img_size=img_size)
tens = tfm(pil_img).unsqueeze(0).to(DEVICE, non_blocking=True)
return tens
def run_generation(pil_image, max_new_tokens, layer, head, mean_layers, mean_heads):
if pil_image is None:
blank = Image.new("RGB", (256, 256), "black")
return (None, None, 1024, None, None, gr.update(choices=[], value=None), blank, blank, np.zeros((256, 256, 3), dtype=np.uint8), "<div style='text-align:center;'>Upload image first.</div>")
pixel_values = _prepare_image_tensor(pil_image, img_size=512)
with torch.no_grad():
gen_ids, gen_text, attentions = model.generate(pixel_values=pixel_values, max_new_tokens=int(max_new_tokens), output_attentions=True)
if isinstance(gen_ids, torch.Tensor): gen_ids = gen_ids[0].tolist()
gen_ids = _strip_trailing_special(gen_ids)
words_gen, gen_word2tok_rel = _words_and_map_from_tokens_simple(gen_ids)
display_choices = [(w, i) for i, w in enumerate(words_gen)]
if not display_choices:
blank_hm = np.zeros((32, 32), dtype=np.uint8)
hm_rgb = _colorize_heatmap(blank_hm).resize(pil_image.size, resample=Image.NEAREST)
overlay = _make_overlay(pil_image, hm_rgb, alpha=0.35)
return (attentions, gen_ids, 1024, words_gen, gen_word2tok_rel, gr.update(choices=[], value=None), pil_image, overlay, np.array(hm_rgb), "<div>No tokens.</div>")
first_idx = 0
hm_rgb_init, overlay_init, html_init = update_visualization(first_idx, attentions, gen_ids, layer, head, mean_layers, mean_heads, words_gen, gen_word2tok_rel, pil_image)
return (attentions, gen_ids, 1024, words_gen, gen_word2tok_rel, gr.update(choices=display_choices, value=first_idx), pil_image, overlay_init, hm_rgb_init, html_init)
def update_visualization(selected_gen_index, attentions, gen_token_ids, layer, head, mean_layers, mean_heads, words_gen, gen_word2tok_rel, pil_image: Optional[Image.Image] = None):
if selected_gen_index is None or attentions is None or gen_word2tok_rel is None:
blank = np.zeros((256, 256, 3), dtype=np.uint8)
return Image.fromarray(blank), Image.fromarray(blank), "<div>Generate first.</div>"
gidx = int(selected_gen_index)
if not (0 <= gidx < len(gen_word2tok_rel)):
blank = np.zeros((256, 256, 3), dtype=np.uint8)
return Image.fromarray(blank), Image.fromarray(blank), "<div>Invalid selection.</div>"
step_index = int(gen_word2tok_rel[gidx])
if not attentions or step_index >= len(attentions):
blank = np.zeros((256, 256, 3), dtype=np.uint8)
return Image.fromarray(blank), Image.fromarray(blank), "<div>No attention.</div>"
token_attn = get_attention_for_token_layer(attentions, token_index=step_index, layer_index=int(layer), head_index=int(head), mean_across_layers=bool(mean_layers), mean_across_heads=bool(mean_heads))
attn_vals = token_attn.detach().cpu().numpy()
if attn_vals.ndim == 2: attn_vals = attn_vals[-1]
heatmap_u8 = _attention_to_heatmap_uint8(attn_1d=attn_vals, img_token_len=1024, side=32)
hm_rgb_pil = _colorize_heatmap(heatmap_u8)
if pil_image is None: pil_image = Image.new("RGB", (256, 256), "black")
hm_rgb_pil_up = hm_rgb_pil.resize(pil_image.size, resample=Image.NEAREST)
overlay_pil = _make_overlay(pil_image, hm_rgb_pil_up, alpha=0.35)
k_len = int(attn_vals.shape[0])
observed_gen = max(0, min(step_index + 1, max(0, k_len - 1024)))
total_gen = len(gen_token_ids)
gen_vec = np.zeros(total_gen, dtype=float)
if observed_gen > 0:
start = 1024
end = min(1024 + observed_gen, k_len)
gen_slice = attn_vals[start:end]
gen_vec[: len(gen_slice)] = gen_slice
html_words = generate_word_visualization_gen_only(words_gen, gen_word2tok_rel, gen_vec, step_index)
return np.array(hm_rgb_pil_up), overlay_pil, html_words
def toggle_slider(is_mean):
return gr.update(interactive=not bool(is_mean))
# ========= Gradio UI =========
EXAMPLES_DIR = "examples"
with gr.Blocks() as demo:
gr.Markdown("# 🖼️→📝 Chest X-ray Report Generation & Classification")
# States
state_attentions = gr.State(None)
state_gen_token_ids = gr.State(None)
state_img_token_len = gr.State(1024)
state_words_gen = gr.State(None)
state_gen_word2tok_rel = gr.State(None)
state_last_image = gr.State(None)
L, H = model_heads_layers()
with gr.Row():
# LEFT COLUMN
with gr.Column(scale=1):
gr.Markdown("### 1) Input")
img_input = gr.Image(type="pil", label="Upload image", height=280)
btn_load_sample = gr.Button("Load random sample", variant="secondary")
sample_status = gr.Markdown("")
gr.Markdown("### 2) Generation Settings")
slider_max_tokens = gr.Slider(5, 200, value=100, step=5, label="Max New Tokens")
btn_generate = gr.Button("GENERATE REPORT & CLASSIFY", variant="primary")
gr.Markdown("### 3) Attention Visualization")
check_mean_layers = gr.Checkbox(False, label="Mean Across Layers")
check_mean_heads = gr.Checkbox(False, label="Mean Across Heads")
slider_layer = gr.Slider(0, max(0, L - 1), value=0, step=1, label="Layer", interactive=True)
slider_head = gr.Slider(0, max(0, H - 1), value=0, step=1, label="Head", interactive=True)
# --- NEW CLASSIFICATION SECTION ---
gr.Markdown("### 4) Disease Probability")
classification_output = gr.Dataframe(
headers=["Disease", "Probability"],
datatype=["str", "str"],
label="Predictions",
interactive=False
)
# ----------------------------------
# RIGHT COLUMN
with gr.Column(scale=3):
with gr.Row():
img_original_view = gr.Image(label="Original", image_mode="RGB", height=256)
img_overlay_view = gr.Image(label="Attention Overlay", image_mode="RGB", height=256)
heatmap_view = gr.Image(label="Heatmap", image_mode="RGB", height=256)
radio_word_selector = gr.Radio([], label="Select Generated Word", info="Shows attention for this word")
html_visualization = gr.HTML("<div style='text-align:center;padding:20px;color:#888;'>Text attention visualization will appear here.</div>")
# Sample loader
def _load_sample_from_examples():
try:
files = [f for f in os.listdir(EXAMPLES_DIR) if not f.startswith(".")]
if not files: return gr.update(), "No files."
fp = os.path.join(EXAMPLES_DIR, random.choice(files))
pil_img = pil_from_path(fp)
return gr.update(value=pil_img), f"Loaded: {os.path.basename(fp)}"
except Exception as e:
return gr.update(), f"Error: {e}"
btn_load_sample.click(_load_sample_from_examples, inputs=[], outputs=[img_input, sample_status])
# MAIN RUN FUNCTION (GENERATION + CLASSIFICATION)
def _run_all_logic(pil_image, *args):
# 1. Run Generation (returns 10 items)
gen_results = run_generation(pil_image, *args)
# 2. Run Classification
classification_data = []
if pil_image and classifier_model:
try:
preds = classifier_model.predict(pil_image)
# Sort by probability descending
sorted_preds = sorted(preds.items(), key=lambda x: x[1], reverse=True)
# Format as list of lists for Gradio Dataframe: ["Name", "95.5%"]
classification_data = [[k, f"{v:.1f}%"] for k, v in sorted_preds]
except Exception as e:
print(f"Classification runtime error: {e}")
classification_data = [["Error", str(e)]]
# Combine: gen_results + original_image (for state) + classification_data
return (*gen_results, pil_image, classification_data)
btn_generate.click(
fn=_run_all_logic,
inputs=[img_input, slider_max_tokens, slider_layer, slider_head, check_mean_layers, check_mean_heads],
outputs=[
state_attentions,
state_gen_token_ids,
state_img_token_len,
state_words_gen,
state_gen_word2tok_rel,
radio_word_selector,
img_original_view,
img_overlay_view,
heatmap_view,
html_visualization,
state_last_image, # Added to outputs
classification_output # Added to outputs
],
)
# UI updates for visualizer controls
def _update_wrapper(selected_gen_index, attn, gen_ids, lyr, hed, meanL, meanH, words, word2tok, last_img):
hm_rgb, overlay, html = update_visualization(selected_gen_index, attn, gen_ids, lyr, hed, meanL, meanH, words, word2tok, pil_image=last_img)
return overlay, hm_rgb, html
for control in [radio_word_selector, slider_layer, slider_head, check_mean_layers, check_mean_heads]:
control.change(
fn=_update_wrapper,
inputs=[radio_word_selector, state_attentions, state_gen_token_ids, slider_layer, slider_head, check_mean_layers, check_mean_heads, state_words_gen, state_gen_word2tok_rel, state_last_image],
outputs=[img_overlay_view, heatmap_view, html_visualization],
)
check_mean_layers.change(toggle_slider, check_mean_layers, slider_layer)
check_mean_heads.change(toggle_slider, check_mean_heads, slider_head)
if __name__ == "__main__":
print(f"Device: {DEVICE}")
demo.launch(debug=True) |