Spaces:
Running
Running
File size: 35,060 Bytes
65cc576 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
from typing import Optional, Union
import torch
import torch.nn.functional as F
from transformers import GPT2LMHeadModel, GPT2Model, GPT2Config
from transformers.cache_utils import Cache, DynamicCache, EncoderDecoderCache
from transformers.masking_utils import create_causal_mask
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
)
from transformers.utils import (
logging,
)
from transformers.models.gpt2.modeling_gpt2 import GPT2Block, GPT2Attention, eager_attention_forward
from torch import nn
from typing import Callable
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
import matplotlib.pyplot as plt
logger = logging.get_logger(__name__)
class GPT2AttentionModified(GPT2Attention):
def __init__(self, config, is_cross_attention=False, layer_idx=None):
super().__init__(config, is_cross_attention=is_cross_attention, layer_idx=layer_idx)
self.config = config
max_positions = 2048
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
1, 1, max_positions, max_positions
),
persistent=False,
)
def forward(
self,
hidden_states: Optional[tuple[torch.FloatTensor]],
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
**kwargs,
) -> tuple[Union[torch.Tensor, tuple[torch.Tensor]], ...]:
is_cross_attention = encoder_hidden_states is not None
if past_key_values is not None:
if isinstance(past_key_values, EncoderDecoderCache):
is_updated = past_key_values.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_layer from cache
curr_past_key_value = past_key_values.cross_attention_cache
else:
curr_past_key_value = past_key_values.self_attention_cache
else:
curr_past_key_value = past_key_values
if is_cross_attention:
if not hasattr(self, "q_attn"):
raise ValueError(
"If class is used as cross attention, the weights `q_attn` have to be defined. "
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
)
query_states = self.q_attn(hidden_states)
attention_mask = encoder_attention_mask
# Try to get key/value states from cache if possible
if past_key_values is not None and is_updated:
key_states = curr_past_key_value.layers[self.layer_idx].keys
value_states = curr_past_key_value.layers[self.layer_idx].values
else:
key_states, value_states = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
shape_kv = (*key_states.shape[:-1], -1, self.head_dim)
key_states = key_states.view(shape_kv).transpose(1, 2)
value_states = value_states.view(shape_kv).transpose(1, 2)
else:
query_states, key_states, value_states = self.c_attn(hidden_states).split(self.split_size, dim=2)
shape_kv = (*key_states.shape[:-1], -1, self.head_dim)
key_states = key_states.view(shape_kv).transpose(1, 2)
value_states = value_states.view(shape_kv).transpose(1, 2)
shape_q = (*query_states.shape[:-1], -1, self.head_dim)
query_states = query_states.view(shape_q).transpose(1, 2)
if (past_key_values is not None and not is_cross_attention) or (
past_key_values is not None and is_cross_attention and not is_updated
):
# save all key/value_layer to cache to be re-used for fast auto-regressive generation
cache_position = cache_position if not is_cross_attention else None
key_states, value_states = curr_past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
# set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
if is_cross_attention:
past_key_values.is_updated[self.layer_idx] = True
is_causal = attention_mask is None and query_states.shape[-2] > 1 and not is_cross_attention
using_eager = self.config._attn_implementation == "eager"
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
if using_eager and self.reorder_and_upcast_attn:
attn_output, attn_weights = self._upcast_and_reordered_attn(
query_states, key_states, value_states, attention_mask, head_mask
)
else:
if getattr(self.config, "prefix_allowed_length", None) is not None:
temp = self
temp.is_cross_attention = True
attn_output, attn_weights = attention_interface(
self if getattr(self.config, "prefix_allowed_length", None) is None else temp,
query_states,
key_states,
value_states,
attention_mask,
head_mask=head_mask,
dropout=self.attn_dropout.p if self.training else 0.0,
is_causal=is_causal if getattr(self.config, "is_prefix", None) is None else False,
**kwargs,
)
if getattr(self.config, "plot_attention_map", False) and self.layer_idx in getattr(self.config, "plot_attention_map_layer", []):
# pick batch=0, head=0
attn_bh = attn_weights[0, 0] # [L,S]
L, S = attn_bh.shape
if L > 1:
if getattr(self.config, "plot_attention_map_generation", 0) == 0:
print(f"Plotting attention map for inputs on layer {self.layer_idx}")
# full 2D heatmap
data = attn_bh.detach().float().cpu().numpy() # [L,S]
plt.figure(figsize=(6,5))
plt.imshow(data, aspect="auto", cmap="hot", vmin=0, vmax=0.01)
plt.colorbar()
plt.xlabel("Keys (S)")
plt.ylabel("Queries (L)")
plt.title(f"Attention map (B0,H0) L={L}, S={S}")
plt.show()
else:
if getattr(self.config, "plot_attention_map_generation", 0) == S:
print(f"Plotting attention row map for token {S} generation on layer {self.layer_idx}")
# attn_bh expected shape: [..., S] for the selected (B0, H0) row
row = attn_bh[0].detach().float().cpu().numpy() # -> np.ndarray shape [S]
n = row.shape[0]
# ----- First 1024 as 32x32 -----
head_1024 = row[:min(1024, n)]
grid = head_1024.reshape(32, 32)
plt.figure(figsize=(6, 5))
plt.imshow(grid, aspect="auto", cmap="hot", vmin=0, vmax=0.01)
plt.yticks([])
plt.colorbar()
plt.xlabel("Keys (S) [indices 0..1023]")
plt.title(f"Attention row (B0,H0) L={self.layer_idx}, S={S} — first 1024")
plt.tight_layout()
plt.show()
# ----- Tail (>=1024) as a single-row heatmap -----
tail = row[1024:]
if tail.size > 0:
plt.figure(figsize=(10, 1.2))
# one-row heatmap
plt.imshow(tail[None, :], aspect="auto", cmap="hot", vmin=0, vmax=0.01)
plt.yticks([])
plt.colorbar()
plt.xlabel(f"Keys (S) [indices 1024..{n-1}]")
plt.title(f"Attention row tail (B0,H0) L={self.layer_idx}, S={S}")
plt.tight_layout()
plt.show()
attn_output = attn_output.reshape(*attn_output.shape[:-2], -1).contiguous()
attn_output = self.c_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
return attn_output, attn_weights
class GPT2BlockModified(GPT2Block):
def __init__(self, config, layer_idx=None):
super().__init__(config=config)
self.attn = GPT2AttentionModified(config=config, layer_idx=layer_idx)
def forward(
self,
hidden_states: Optional[tuple[torch.FloatTensor]],
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Union[tuple[torch.Tensor], Optional[tuple[torch.Tensor, tuple[torch.FloatTensor, ...]]]]:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output, self_attn_weights = self.attn(
hidden_states,
past_key_values=past_key_values,
cache_position=cache_position,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
**kwargs,
)
# residual connection
hidden_states = attn_output + residual
if encoder_hidden_states is not None:
# add one self-attention block for cross-attention
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
"cross-attention layers by setting `config.add_cross_attention=True`"
)
residual = hidden_states
hidden_states = self.ln_cross_attn(hidden_states)
cross_attn_output, cross_attn_weights = self.crossattention(
hidden_states,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
# residual connection
hidden_states = residual + cross_attn_output
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if encoder_hidden_states is not None:
outputs += (cross_attn_weights,)
return outputs
class GPT2ModelModified(GPT2Model):
def __init__(self, config):
super().__init__(config)
self.config = config
self.config_causal = config
self.config_causal._attn_implementation = "eager" # Ensure causal mask creation uses eager implementation
# TEMPORARY: override the transformer blocks to pass segmentation masks
self.h = nn.ModuleList([GPT2BlockModified(config, layer_idx=i) for i in range(config.num_hidden_layers)])
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[tuple[tuple[torch.Tensor]], Cache]] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
segmentation_mask: Optional[torch.FloatTensor] = None,
**kwargs,
) -> Union[tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
`past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input
sequence tokens in the vocabulary.
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# based on pattern from src/transformers/models/whisper/modeling_whisper.py::WhisperDecoder
if use_cache:
if past_key_values is None:
past_key_values = DynamicCache()
elif isinstance(past_key_values, tuple):
logger.warning_once(
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.53.0. "
"You should pass an instance of `Cache` instead, e.g. "
"`past_key_values=DynamicCache.from_legacy_cache(past_key_values)`."
)
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
if self.config.add_cross_attention and not isinstance(past_key_values, EncoderDecoderCache):
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
# Attention mask.
# ._update_causal_mask() and ._prepare_4d_causal_attention_mask_with_cache_position() copied from LlamaModel
if attention_mask is not None and attention_mask.ndim < 4:
attention_mask = attention_mask.view(batch_size, -1)
causal_mask = create_causal_mask(
config=self.config_causal,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
_use_sdpa = self._attn_implementation == "sdpa" and output_attentions is False and head_mask is None
if self.config.add_cross_attention and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
if _use_sdpa:
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
mask=encoder_attention_mask, dtype=inputs_embeds.dtype, tgt_len=input_shape[-1]
)
elif self._attn_implementation != "flash_attention_2":
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
for i, block in enumerate(self.h):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if segmentation_mask is not None and causal_mask is not None:
# Make a safe copy of the causal mask and ensure its spatial
# dimensions match the sequence length that the attention
# functions expect. This prevents off-by-one shape errors
# when using eager attention (torch.where requires same sizes).
causal_mask_modified = causal_mask.clone()
if getattr(self.config, "prefix_allowed_length", None) is not None:
causal_mask_modified[:, :, :, :self.config.prefix_allowed_length].zero_()
# Use the input sequence length to crop the causal mask if needed
seq_len = input_shape[-1]
if causal_mask_modified.shape[2] != seq_len or causal_mask_modified.shape[3] != seq_len:
causal_mask_modified = causal_mask_modified[:, :, :seq_len, :seq_len]
# Clip segmentation mask to fit into causal_mask_modified before adding.
_, _, M, N = segmentation_mask.shape
M = min(M, causal_mask_modified.shape[2])
N = min(N, causal_mask_modified.shape[3])
causal_mask_modified[:, :, :M, :N] += segmentation_mask[:, i, :M, :N].unsqueeze(1)
if getattr(self.config, "plot_attention_mask", False) and i in getattr(self.config, "plot_attention_mask_layer", [0]):
if segmentation_mask is not None and causal_mask is not None:
print(f"Block {i}: segmentation mask added to causal mask.")
plt.imshow(causal_mask_modified[0,0].detach().cpu(), aspect='auto', cmap='hot', vmin=-1, vmax=1)
plt.colorbar()
plt.title(f"Causal Mask with Segmentation (Block {i})")
plt.show()
else:
print(f"Block {i}: no segmentation mask applied.")
plt.imshow(causal_mask[0,0].detach().cpu(), aspect='auto', cmap='hot', vmin=-1, vmax=1)
plt.colorbar()
plt.title(f"Causal Mask (Block {i})")
plt.show()
outputs = block(
hidden_states,
past_key_values if not (self.gradient_checkpointing and self.training) else None,
cache_position,
causal_mask_modified if segmentation_mask is not None and causal_mask is not None else causal_mask,
head_mask[i],
encoder_hidden_states, # as a positional argument for gradient checkpointing
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
**kwargs,
)
hidden_states = outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[2],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
past_key_values = past_key_values if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, past_key_values, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class GPT2LMHeadModelModified(GPT2LMHeadModel):
def __init__(self, config):
super().__init__(config)
# replace the base transformer with our modified transformer implementation
self.transformer = GPT2ModelModified(config)
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[tuple[tuple[torch.Tensor]]] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
segmentation_mask: Optional[torch.FloatTensor] = None,
prefix_allowed_length: Optional[int] = None,
plot_attention_mask: Optional[bool] = False,
plot_attention_mask_layer: Optional[list[int]] = [0],
plot_attention_map: Optional[bool] = False,
plot_attention_map_layer: Optional[list[int]] = [0],
plot_attention_map_generation: Optional[int] = 0,
**kwargs,
) -> Union[tuple, CausalLMOutputWithCrossAttentions]:
r"""
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
`past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input
sequence tokens in the vocabulary.
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
labels (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if prefix_allowed_length is not None:
self.config.prefix_allowed_length = prefix_allowed_length
if plot_attention_mask is not None:
self.config.plot_attention_mask = plot_attention_mask
if plot_attention_mask_layer is not None:
self.config.plot_attention_mask_layer = plot_attention_mask_layer
if plot_attention_map is not None:
if plot_attention_map_layer is not None:
self.config.plot_attention_map_layer = plot_attention_map_layer
if plot_attention_map_generation is not None:
self.config.plot_attention_map_generation = plot_attention_map_generation
self.config.plot_attention_map = plot_attention_map
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
cache_position=cache_position,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
segmentation_mask=segmentation_mask, #Added this parameter
**kwargs,
)
hidden_states = transformer_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.lm_head.weight.device)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
# Flatten the tokens
loss = self.loss_function(
logits,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
@torch.no_grad()
def expand_gpt2_positional_embeddings(
model: torch.nn.Module,
new_max_positions: int,
mode: str = "linear", # "linear" | "copy_last" | "zeros"
align_corners: bool = True, # for linear interpolation
):
"""
Expand GPT-2's learned positional embeddings (wpe) to `new_max_positions`.
Works with GPT2LMHeadModel or GPT2Model (HF). Updates model.config.n_positions (and n_ctx if present).
Does NOT mutate token embeddings; only position table + config.
Args:
model: HF GPT2LMHeadModel or GPT2Model (already loaded).
new_max_positions: int, desired max sequence length (e.g., 1536 or 2048).
mode: how to initialize new rows if expanding:
- "linear": 1D linear interpolation along position dim (recommended)
- "copy_last": copy the last learned vector into all new rows
- "zeros": initialize new rows to zero
align_corners: passed to F.interpolate for "linear" mode.
Returns:
model (same instance) with expanded wpe and updated config.
"""
# Locate the position embedding table.
# Support both:
# - GPT2LMHeadModel (has .transformer which is a GPT2Model with .wpe)
# - GPT2Model (exposes .wpe directly)
if hasattr(model, "transformer") and hasattr(model.transformer, "wpe"):
model_for_wpe = model.transformer
elif hasattr(model, "wpe"):
model_for_wpe = model
else:
raise ValueError("Model does not look like a GPT-2 family model with a position embedding 'wpe')")
wpe = model_for_wpe.wpe
old_n, d = wpe.weight.shape
if new_max_positions <= 0:
raise ValueError("new_max_positions must be positive")
if new_max_positions == old_n:
# Still update config for consistency
if hasattr(model.config, "n_positions"):
model.config.n_positions = new_max_positions
if hasattr(model.config, "n_ctx"):
model.config.n_ctx = new_max_positions
return model
device = wpe.weight.device
dtype = wpe.weight.dtype
if new_max_positions < old_n:
# Shrink (rare): just slice
new_weight = wpe.weight[:new_max_positions].clone()
else:
# Expand
if mode == "linear":
# Interpolate along position dimension.
# Treat embedding dim as channels: (1, d, old_n) -> (1, d, new_n) -> (new_n, d)
w = wpe.weight.transpose(0, 1).unsqueeze(0) # (1, d, old_n)
w_new = F.interpolate(w, size=new_max_positions, mode="linear", align_corners=align_corners)
new_weight = w_new.squeeze(0).transpose(0, 1).contiguous() # (new_n, d)
elif mode == "copy_last":
new_weight = torch.empty((new_max_positions, d), device=device, dtype=dtype)
new_weight[:old_n].copy_(wpe.weight)
new_weight[old_n:].copy_(wpe.weight[old_n - 1].expand(new_max_positions - old_n, d))
elif mode == "zeros":
new_weight = torch.zeros((new_max_positions, d), device=device, dtype=dtype)
new_weight[:old_n].copy_(wpe.weight)
else:
raise ValueError(f"Unknown mode '{mode}'")
# Replace embedding module on whichever object held the original table
new_wpe = torch.nn.Embedding(new_max_positions, d, device=device, dtype=dtype)
new_wpe.weight.copy_(new_weight)
# Keep requires_grad True (default). If you want to freeze, set .requires_grad_(False).
if hasattr(model, "transformer") and hasattr(model.transformer, "wpe"):
model.transformer.wpe = new_wpe
else:
model.wpe = new_wpe
# Update config fields used by HF
if hasattr(model.config, "n_positions"):
model.config.n_positions = new_max_positions
if hasattr(model.config, "n_ctx"):
model.config.n_ctx = new_max_positions
return model
def create_decoder(attention = "sdpa"):
config = GPT2Config.from_pretrained("gpt2")
config._attn_implementation = attention
new_max_positions = 2048
decoder = GPT2LMHeadModelModified.from_pretrained("gpt2", config=config)
decoder.config._attn_implementation = attention
decoder = expand_gpt2_positional_embeddings(decoder, new_max_positions=new_max_positions, mode="linear")
return decoder |