Spaces:
Paused
Paused
| import json | |
| from collections import defaultdict | |
| import os | |
| import shutil | |
| import tarfile | |
| from pathlib import Path | |
| from typing import Optional | |
| import numpy as np | |
| import pytorch_lightning as pl | |
| import torch | |
| import torch.utils.data as torchdata | |
| from omegaconf import DictConfig | |
| from ... import logger | |
| from .dataset import MapLocDataset | |
| from ..sequential import chunk_sequence | |
| from ..torch import collate, worker_init_fn | |
| from ..schema import MIADataConfiguration | |
| def pack_dump_dict(dump): | |
| for per_seq in dump.values(): | |
| if "points" in per_seq: | |
| for chunk in list(per_seq["points"]): | |
| points = per_seq["points"].pop(chunk) | |
| if points is not None: | |
| per_seq["points"][chunk] = np.array( | |
| per_seq["points"][chunk], np.float64 | |
| ) | |
| for view in per_seq["views"].values(): | |
| for k in ["R_c2w", "roll_pitch_yaw"]: | |
| view[k] = np.array(view[k], np.float32) | |
| for k in ["chunk_id"]: | |
| if k in view: | |
| view.pop(k) | |
| if "observations" in view: | |
| view["observations"] = np.array(view["observations"]) | |
| for camera in per_seq["cameras"].values(): | |
| for k in ["params"]: | |
| camera[k] = np.array(camera[k], np.float32) | |
| return dump | |
| class MapillaryDataModule(pl.LightningDataModule): | |
| dump_filename = "dump.json" | |
| images_archive = "images.tar.gz" | |
| images_dirname = "images/" | |
| semantic_masks_dirname = "semantic_masks/" | |
| flood_dirname = "flood_fill/" | |
| def __init__(self, cfg: MIADataConfiguration): | |
| super().__init__() | |
| self.cfg = cfg | |
| self.root = self.cfg.data_dir | |
| self.local_dir = None | |
| def prepare_data(self): | |
| for scene in self.cfg.scenes: | |
| dump_dir = self.root / scene | |
| assert (dump_dir / self.dump_filename).exists(), dump_dir | |
| # assert (dump_dir / self.cfg.tiles_filename).exists(), dump_dir | |
| if self.local_dir is None: | |
| assert (dump_dir / self.images_dirname).exists(), dump_dir | |
| continue | |
| assert (dump_dir / self.semantic_masks_dirname).exists(), dump_dir | |
| assert (dump_dir / self.flood_dirname).exists(), dump_dir | |
| # Cache the folder of images locally to speed up reading | |
| local_dir = self.local_dir / scene | |
| if local_dir.exists(): | |
| shutil.rmtree(local_dir) | |
| local_dir.mkdir(exist_ok=True, parents=True) | |
| images_archive = dump_dir / self.images_archive | |
| logger.info("Extracting the image archive %s.", images_archive) | |
| with tarfile.open(images_archive) as fp: | |
| fp.extractall(local_dir) | |
| def setup(self, stage: Optional[str] = None): | |
| self.dumps = {} | |
| # self.tile_managers = {} | |
| self.image_dirs = {} | |
| self.seg_masks_dir = {} | |
| self.flood_masks_dir = {} | |
| names = [] | |
| for scene in self.cfg.scenes: | |
| logger.info("Loading scene %s.", scene) | |
| dump_dir = self.root / scene | |
| logger.info("Loading dump json file %s.", self.dump_filename) | |
| with (dump_dir / self.dump_filename).open("r") as fp: | |
| self.dumps[scene] = pack_dump_dict(json.load(fp)) | |
| for seq, per_seq in self.dumps[scene].items(): | |
| for cam_id, cam_dict in per_seq["cameras"].items(): | |
| if cam_dict["model"] != "PINHOLE": | |
| raise ValueError( | |
| f"Unsupported camera model: {cam_dict['model']} for {scene},{seq},{cam_id}" | |
| ) | |
| self.image_dirs[scene] = ( | |
| (self.local_dir or self.root) / scene / self.images_dirname | |
| ) | |
| assert self.image_dirs[scene].exists(), self.image_dirs[scene] | |
| self.seg_masks_dir[scene] = ( | |
| (self.local_dir or self.root) / scene / self.semantic_masks_dirname | |
| ) | |
| assert self.seg_masks_dir[scene].exists(), self.seg_masks_dir[scene] | |
| self.flood_masks_dir[scene] = ( | |
| (self.local_dir or self.root) / scene / self.flood_dirname | |
| ) | |
| assert self.flood_masks_dir[scene].exists(), self.flood_masks_dir[scene] | |
| images = set(x.split('.')[0] for x in os.listdir(self.image_dirs[scene])) | |
| flood_masks = set(x.split('.')[0] for x in os.listdir(self.flood_masks_dir[scene])) | |
| semantic_masks = set(x.split('.')[0] for x in os.listdir(self.seg_masks_dir[scene])) | |
| for seq, data in self.dumps[scene].items(): | |
| for name in data["views"]: | |
| if name in images and name.split("_")[0] in flood_masks and name.split("_")[0] in semantic_masks: | |
| names.append((scene, seq, name)) | |
| self.parse_splits(self.cfg.split, names) | |
| if self.cfg.filter_for is not None: | |
| self.filter_elements() | |
| self.pack_data() | |
| def pack_data(self): | |
| # We pack the data into compact tensors that can be shared across processes without copy | |
| exclude = { | |
| "compass_angle", | |
| "compass_accuracy", | |
| "gps_accuracy", | |
| "chunk_key", | |
| "panorama_offset", | |
| } | |
| cameras = { | |
| scene: {seq: per_seq["cameras"] for seq, per_seq in per_scene.items()} | |
| for scene, per_scene in self.dumps.items() | |
| } | |
| points = { | |
| scene: { | |
| seq: { | |
| i: torch.from_numpy(p) for i, p in per_seq.get("points", {}).items() | |
| } | |
| for seq, per_seq in per_scene.items() | |
| } | |
| for scene, per_scene in self.dumps.items() | |
| } | |
| self.data = {} | |
| # TODO: remove | |
| if self.cfg.split == "splits_MGL_13loc.json": | |
| # Use Last 20% as Val | |
| num_samples_to_move = int(len(self.splits['train']) * 0.2) | |
| samples_to_move = self.splits['train'][-num_samples_to_move:] | |
| self.splits['val'].extend(samples_to_move) | |
| self.splits['train'] = self.splits['train'][:-num_samples_to_move] | |
| print(f"Dataset Len: {len(self.splits['train']), len(self.splits['val'])}\n\n\n\n") | |
| elif self.cfg.split == "splits_MGL_soma_70k_mappred_random.json": | |
| for stage, names in self.splits.items(): | |
| print("Length of splits {}: ".format(stage), len(self.splits[stage])) | |
| for stage, names in self.splits.items(): | |
| view = self.dumps[names[0][0]][names[0][1]]["views"][names[0][2]] | |
| data = {k: [] for k in view.keys() - exclude} | |
| for scene, seq, name in names: | |
| for k in data: | |
| data[k].append(self.dumps[scene][seq]["views"][name].get(k, None)) | |
| for k in data: | |
| v = np.array(data[k]) | |
| if np.issubdtype(v.dtype, np.integer) or np.issubdtype( | |
| v.dtype, np.floating | |
| ): | |
| v = torch.from_numpy(v) | |
| data[k] = v | |
| data["cameras"] = cameras | |
| data["points"] = points | |
| self.data[stage] = data | |
| self.splits[stage] = np.array(names) | |
| def filter_elements(self): | |
| for stage, names in self.splits.items(): | |
| names_select = [] | |
| for scene, seq, name in names: | |
| view = self.dumps[scene][seq]["views"][name] | |
| if self.cfg.filter_for == "ground_plane": | |
| if not (1.0 <= view["height"] <= 3.0): | |
| continue | |
| planes = self.dumps[scene][seq].get("plane") | |
| if planes is not None: | |
| inliers = planes[str(view["chunk_id"])][-1] | |
| if inliers < 10: | |
| continue | |
| if self.cfg.filter_by_ground_angle is not None: | |
| plane = np.array(view["plane_params"]) | |
| normal = plane[:3] / np.linalg.norm(plane[:3]) | |
| angle = np.rad2deg(np.arccos(np.abs(normal[-1]))) | |
| if angle > self.cfg.filter_by_ground_angle: | |
| continue | |
| elif self.cfg.filter_for == "pointcloud": | |
| if len(view["observations"]) < self.cfg.min_num_points: | |
| continue | |
| elif self.cfg.filter_for is not None: | |
| raise ValueError(f"Unknown filtering: {self.cfg.filter_for}") | |
| names_select.append((scene, seq, name)) | |
| logger.info( | |
| "%s: Keep %d/%d images after filtering for %s.", | |
| stage, | |
| len(names_select), | |
| len(names), | |
| self.cfg.filter_for, | |
| ) | |
| self.splits[stage] = names_select | |
| def parse_splits(self, split_arg, names): | |
| if split_arg is None: | |
| self.splits = { | |
| "train": names, | |
| "val": names, | |
| } | |
| elif isinstance(split_arg, int): | |
| names = np.random.RandomState(self.cfg.seed).permutation(names).tolist() | |
| self.splits = { | |
| "train": names[split_arg:], | |
| "val": names[:split_arg], | |
| } | |
| elif isinstance(split_arg, float): | |
| names = np.random.RandomState(self.cfg.seed).permutation(names).tolist() | |
| self.splits = { | |
| "train": names[int(split_arg * len(names)) :], | |
| "val": names[: int(split_arg * len(names))], | |
| } | |
| elif isinstance(split_arg, DictConfig): | |
| scenes_val = set(split_arg.val) | |
| scenes_train = set(split_arg.train) | |
| assert len(scenes_val - set(self.cfg.scenes)) == 0 | |
| assert len(scenes_train - set(self.cfg.scenes)) == 0 | |
| self.splits = { | |
| "train": [n for n in names if n[0] in scenes_train], | |
| "val": [n for n in names if n[0] in scenes_val], | |
| } | |
| elif isinstance(split_arg, str): | |
| if "/" in split_arg: | |
| split_path = self.root / split_arg | |
| else: | |
| split_path = Path(split_arg) | |
| with split_path.open("r") as fp: | |
| splits = json.load(fp) | |
| splits = { | |
| k: {loc: set(ids) for loc, ids in split.items()} | |
| for k, split in splits.items() | |
| } | |
| self.splits = {} | |
| for k, split in splits.items(): | |
| self.splits[k] = [ | |
| n | |
| for n in names | |
| if n[0] in split and int(n[-1].rsplit("_", 1)[0]) in split[n[0]] | |
| ] | |
| else: | |
| raise ValueError(split_arg) | |
| def dataset(self, stage: str): | |
| return MapLocDataset( | |
| stage, | |
| self.cfg, | |
| self.splits[stage], | |
| self.data[stage], | |
| self.image_dirs, | |
| self.seg_masks_dir, | |
| self.flood_masks_dir, | |
| image_ext=".jpg", | |
| ) | |
| def sequence_dataset(self, stage: str, **kwargs): | |
| keys = self.splits[stage] | |
| seq2indices = defaultdict(list) | |
| for index, (_, seq, _) in enumerate(keys): | |
| seq2indices[seq].append(index) | |
| # chunk the sequences to the required length | |
| chunk2indices = {} | |
| for seq, indices in seq2indices.items(): | |
| chunks = chunk_sequence(self.data[stage], indices, **kwargs) | |
| for i, sub_indices in enumerate(chunks): | |
| chunk2indices[seq, i] = sub_indices | |
| # store the index of each chunk in its sequence | |
| chunk_indices = torch.full((len(keys),), -1) | |
| for (_, chunk_index), idx in chunk2indices.items(): | |
| chunk_indices[idx] = chunk_index | |
| self.data[stage]["chunk_index"] = chunk_indices | |
| dataset = self.dataset(stage) | |
| return dataset, chunk2indices | |
| def sequence_dataloader(self, stage: str, shuffle: bool = False, **kwargs): | |
| dataset, chunk2idx = self.sequence_dataset(stage, **kwargs) | |
| chunk_keys = sorted(chunk2idx) | |
| if shuffle: | |
| perm = torch.randperm(len(chunk_keys)) | |
| chunk_keys = [chunk_keys[i] for i in perm] | |
| key_indices = [i for key in chunk_keys for i in chunk2idx[key]] | |
| num_workers = self.cfg.loading[stage]["num_workers"] | |
| loader = torchdata.DataLoader( | |
| dataset, | |
| batch_size=None, | |
| sampler=key_indices, | |
| num_workers=num_workers, | |
| shuffle=False, | |
| pin_memory=True, | |
| persistent_workers=num_workers > 0, | |
| worker_init_fn=worker_init_fn, | |
| collate_fn=collate, | |
| ) | |
| return loader, chunk_keys, chunk2idx | |