Spaces:
Sleeping
Sleeping
upload
Browse files- .gradio/certificate.pem +31 -0
- CLAUDE.md +33 -0
- app.py +301 -0
- requirements.txt +10 -0
.gradio/certificate.pem
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-----BEGIN CERTIFICATE-----
|
| 2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
| 3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
| 4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
| 5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
| 6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
| 7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
| 8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
| 9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
| 10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
| 11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
| 12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
| 13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
| 14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
| 15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
| 16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
| 17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
| 18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
| 19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
| 20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
| 21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
| 22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
| 23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
| 24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
| 25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
| 26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
| 27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
| 28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
| 29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
| 30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
| 31 |
+
-----END CERTIFICATE-----
|
CLAUDE.md
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# CLAUDE.md
|
| 2 |
+
|
| 3 |
+
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
| 4 |
+
|
| 5 |
+
## Repository Overview
|
| 6 |
+
|
| 7 |
+
This is a Hugging Face Spaces repository configured for a text summarization project. The repository currently contains minimal setup with just configuration files.
|
| 8 |
+
|
| 9 |
+
### Current Structure
|
| 10 |
+
- `README.md`: Hugging Face Spaces configuration with Docker SDK setup
|
| 11 |
+
- Repository is configured as a Hugging Face Space with:
|
| 12 |
+
- Docker SDK
|
| 13 |
+
- Pink to purple gradient theme
|
| 14 |
+
- MIT license
|
| 15 |
+
|
| 16 |
+
### Development Setup
|
| 17 |
+
|
| 18 |
+
This appears to be an early-stage Hugging Face Spaces project. Based on the configuration:
|
| 19 |
+
- Uses Docker for deployment
|
| 20 |
+
- Intended for text summarization functionality
|
| 21 |
+
- Currently lacks implementation files
|
| 22 |
+
|
| 23 |
+
### Next Steps for Development
|
| 24 |
+
|
| 25 |
+
When developing this project, you'll likely need to:
|
| 26 |
+
- Add Python requirements file (`requirements.txt`) with Gradio library
|
| 27 |
+
- Create main application file (typically `app.py` for Hugging Face Spaces)
|
| 28 |
+
- Add text summarization function dashboard template using Gradio
|
| 29 |
+
- Configure appropriate Docker setup if not using default
|
| 30 |
+
|
| 31 |
+
### Hugging Face Spaces Reference
|
| 32 |
+
|
| 33 |
+
Configuration follows Hugging Face Spaces format. See: https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import whisper
|
| 3 |
+
import PyPDF2
|
| 4 |
+
import docx
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
import io
|
| 7 |
+
import tempfile
|
| 8 |
+
import os
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
class TextSummarizer:
|
| 12 |
+
def __init__(self):
|
| 13 |
+
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 14 |
+
self.whisper_model = whisper.load_model("base")
|
| 15 |
+
|
| 16 |
+
def extract_text_from_pdf(self, pdf_file):
|
| 17 |
+
"""Extract text from a PDF file object"""
|
| 18 |
+
try:
|
| 19 |
+
reader = PyPDF2.PdfReader(pdf_file)
|
| 20 |
+
text = ""
|
| 21 |
+
for page in reader.pages:
|
| 22 |
+
text += page.extract_text() or ""
|
| 23 |
+
return text
|
| 24 |
+
except Exception as e:
|
| 25 |
+
return f"Error reading PDF: {str(e)}"
|
| 26 |
+
|
| 27 |
+
def extract_text_from_docx(self, docx_file):
|
| 28 |
+
"""Extract text from a DOCX file object"""
|
| 29 |
+
try:
|
| 30 |
+
doc = docx.Document(docx_file)
|
| 31 |
+
text = ""
|
| 32 |
+
for paragraph in doc.paragraphs:
|
| 33 |
+
text += paragraph.text + "\n"
|
| 34 |
+
return text
|
| 35 |
+
except Exception as e:
|
| 36 |
+
return f"Error reading DOCX: {str(e)}"
|
| 37 |
+
|
| 38 |
+
def process_text_file(self, txt_file):
|
| 39 |
+
"""Extract text from a TXT file object"""
|
| 40 |
+
try:
|
| 41 |
+
# The file from Gradio is a temporary file, we can read it directly
|
| 42 |
+
with open(txt_file.name, 'r', encoding='utf-8') as f:
|
| 43 |
+
return f.read()
|
| 44 |
+
except Exception as e:
|
| 45 |
+
return f"Error reading TXT file: {str(e)}"
|
| 46 |
+
|
| 47 |
+
def transcribe_audio(self, audio_file):
|
| 48 |
+
"""Transcribe audio file to text using Whisper"""
|
| 49 |
+
try:
|
| 50 |
+
result = self.whisper_model.transcribe(audio_file)
|
| 51 |
+
return result["text"]
|
| 52 |
+
except Exception as e:
|
| 53 |
+
return f"Error transcribing audio: {str(e)}"
|
| 54 |
+
|
| 55 |
+
def summarize_text(self, text, max_length=150, min_length=50):
|
| 56 |
+
"""Summarize text using BART model"""
|
| 57 |
+
try:
|
| 58 |
+
if len(text.strip()) < 50:
|
| 59 |
+
return "Text is too short to summarize."
|
| 60 |
+
|
| 61 |
+
summary = self.summarizer(text, max_length=max_length, min_length=min_length, do_sample=False)
|
| 62 |
+
return summary[0]['summary_text']
|
| 63 |
+
except Exception as e:
|
| 64 |
+
return f"Error summarizing text: {str(e)}"
|
| 65 |
+
|
| 66 |
+
def process_file(self, file, summary_length):
|
| 67 |
+
"""Process uploaded file and return summary"""
|
| 68 |
+
if file is None:
|
| 69 |
+
return "No file uploaded."
|
| 70 |
+
|
| 71 |
+
file_path = file.name
|
| 72 |
+
file_extension = os.path.splitext(file_path)[1].lower()
|
| 73 |
+
|
| 74 |
+
max_length = {"Short": 100, "Medium": 150, "Long": 250}[summary_length]
|
| 75 |
+
min_length = max_length // 3
|
| 76 |
+
|
| 77 |
+
text_extractors = {
|
| 78 |
+
".txt": self.process_text_file,
|
| 79 |
+
".pdf": self.extract_text_from_pdf,
|
| 80 |
+
".docx": self.extract_text_from_docx,
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
audio_transcribers = {
|
| 84 |
+
".mp3": self.transcribe_audio,
|
| 85 |
+
".wav": self.transcribe_audio,
|
| 86 |
+
".m4a": self.transcribe_audio,
|
| 87 |
+
".flac": self.transcribe_audio,
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
if file_extension in text_extractors:
|
| 91 |
+
text = text_extractors[file_extension](file)
|
| 92 |
+
elif file_extension in audio_transcribers:
|
| 93 |
+
text = audio_transcribers[file_extension](file_path)
|
| 94 |
+
else:
|
| 95 |
+
return f"Unsupported file format: {file_extension}"
|
| 96 |
+
|
| 97 |
+
if isinstance(text, str) and text.startswith("Error"):
|
| 98 |
+
return text
|
| 99 |
+
|
| 100 |
+
summary = self.summarize_text(text, max_length, min_length)
|
| 101 |
+
|
| 102 |
+
return f"**Original Text Length:** {len(text)} characters\n\n**Summary:**\n{summary}"
|
| 103 |
+
|
| 104 |
+
def transcribe_stream(self, audio_chunk, current_transcript):
|
| 105 |
+
"""Transcribe a stream of audio chunks and append to the transcript."""
|
| 106 |
+
if audio_chunk is None:
|
| 107 |
+
return current_transcript, current_transcript
|
| 108 |
+
|
| 109 |
+
try:
|
| 110 |
+
sample_rate, data = audio_chunk
|
| 111 |
+
# Convert from int16 to float32
|
| 112 |
+
data = data.astype(np.float32) / 32768.0
|
| 113 |
+
|
| 114 |
+
# Transcribe the audio chunk
|
| 115 |
+
result = self.whisper_model.transcribe(data, fp16=False)
|
| 116 |
+
new_text = result['text']
|
| 117 |
+
|
| 118 |
+
updated_transcript = current_transcript + new_text + " "
|
| 119 |
+
return updated_transcript, updated_transcript
|
| 120 |
+
except Exception as e:
|
| 121 |
+
return f"Error during transcription: {str(e)}", current_transcript
|
| 122 |
+
|
| 123 |
+
def convert_file_to_text(self, file):
|
| 124 |
+
"""Extract text from any supported file format."""
|
| 125 |
+
if file is None:
|
| 126 |
+
return "No file uploaded for conversion."
|
| 127 |
+
|
| 128 |
+
file_path = file.name
|
| 129 |
+
file_extension = os.path.splitext(file_path)[1].lower()
|
| 130 |
+
|
| 131 |
+
text_extractors = {
|
| 132 |
+
".txt": self.process_text_file,
|
| 133 |
+
".pdf": self.extract_text_from_pdf,
|
| 134 |
+
".docx": self.extract_text_from_docx,
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
audio_transcribers = {
|
| 138 |
+
".mp3": self.transcribe_audio,
|
| 139 |
+
".wav": self.transcribe_audio,
|
| 140 |
+
".m4a": self.transcribe_audio,
|
| 141 |
+
".flac": self.transcribe_audio,
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
if file_extension in text_extractors:
|
| 145 |
+
return text_extractors[file_extension](file)
|
| 146 |
+
elif file_extension in audio_transcribers:
|
| 147 |
+
return audio_transcribers[file_extension](file_path)
|
| 148 |
+
else:
|
| 149 |
+
return f"Unsupported file format for conversion: {file_extension}"
|
| 150 |
+
|
| 151 |
+
def create_interface():
|
| 152 |
+
summarizer = TextSummarizer()
|
| 153 |
+
|
| 154 |
+
with gr.Blocks(title="Text Summarization Dashboard") as interface:
|
| 155 |
+
gr.Markdown("Text Summarization Dashboard")
|
| 156 |
+
gr.Markdown("Manage files, and interact with specialized AI agents for various tasks.")
|
| 157 |
+
|
| 158 |
+
# State component to store the uploaded file
|
| 159 |
+
uploaded_file_state = gr.State(None)
|
| 160 |
+
|
| 161 |
+
with gr.Tabs():
|
| 162 |
+
with gr.TabItem("π File Management & Conversion"):
|
| 163 |
+
with gr.Row():
|
| 164 |
+
with gr.Column(scale=1):
|
| 165 |
+
gr.Markdown("### Upload File")
|
| 166 |
+
file_input = gr.File(
|
| 167 |
+
label="Select a file",
|
| 168 |
+
file_types=[".txt", ".pdf", ".docx", ".mp3", ".wav", ".m4a", ".flac"]
|
| 169 |
+
)
|
| 170 |
+
uploaded_file_name = gr.Textbox(label="Current File", interactive=False)
|
| 171 |
+
|
| 172 |
+
def store_file(file):
|
| 173 |
+
if file:
|
| 174 |
+
return file, file.name
|
| 175 |
+
return None, "No file uploaded"
|
| 176 |
+
|
| 177 |
+
file_input.upload(
|
| 178 |
+
fn=store_file,
|
| 179 |
+
inputs=[file_input],
|
| 180 |
+
outputs=[uploaded_file_state, uploaded_file_name]
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
with gr.Column(scale=1):
|
| 184 |
+
gr.Markdown("### Convert to TXT")
|
| 185 |
+
gr.Markdown("Supported formats for conversion to .txt: `.pdf`, `.docx`, `.mp3`, `.wav`, `.m4a`, `.flac`")
|
| 186 |
+
convert_btn = gr.Button("Convert to TXT", variant="secondary")
|
| 187 |
+
conversion_output = gr.Textbox(
|
| 188 |
+
label="Conversion Output",
|
| 189 |
+
placeholder="Converted text will appear here...",
|
| 190 |
+
lines=8,
|
| 191 |
+
interactive=False
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
convert_btn.click(
|
| 195 |
+
fn=summarizer.convert_file_to_text,
|
| 196 |
+
inputs=[uploaded_file_state],
|
| 197 |
+
outputs=[conversion_output]
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
with gr.TabItem("βοΈ Meeting Summarization"):
|
| 201 |
+
gr.Markdown("### Meeting Summarization")
|
| 202 |
+
gr.Markdown("Generate summaries from your meeting transcripts and other documents.")
|
| 203 |
+
with gr.Row():
|
| 204 |
+
with gr.Column(scale=1):
|
| 205 |
+
summary_length = gr.Dropdown(
|
| 206 |
+
choices=["Short", "Medium", "Long"],
|
| 207 |
+
value="Medium",
|
| 208 |
+
label="Summary Length",
|
| 209 |
+
info="Short: ~300 words, Medium: ~500+ words, Long: ~1000+ words"
|
| 210 |
+
)
|
| 211 |
+
submit_btn = gr.Button("Generate Summary", variant="primary")
|
| 212 |
+
|
| 213 |
+
with gr.Column(scale=2):
|
| 214 |
+
output = gr.Textbox(
|
| 215 |
+
label="Summary Output",
|
| 216 |
+
lines=10,
|
| 217 |
+
placeholder="Your summary will appear here..."
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
with gr.Accordion("βοΈ Model Settings", open=False):
|
| 221 |
+
gr.Markdown("### Model Selection & Fine-Tuning")
|
| 222 |
+
gr.Markdown("Choose different models and configure their parameters.")
|
| 223 |
+
with gr.Row():
|
| 224 |
+
gr.Dropdown(
|
| 225 |
+
label="Select Summarization Model",
|
| 226 |
+
choices=["facebook/bart-large-cnn", "t5-small", "google/pegasus-xsum"],
|
| 227 |
+
value="facebook/bart-large-cnn"
|
| 228 |
+
)
|
| 229 |
+
with gr.Accordion("Fine-Tuning Options", open=False):
|
| 230 |
+
gr.Slider(label="Min Tokens", minimum=10, maximum=200, step=5, value=50)
|
| 231 |
+
gr.Slider(label="Max Tokens", minimum=50, maximum=500, step=10, value=150)
|
| 232 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=1.5, step=0.1, value=0.7)
|
| 233 |
+
gr.Slider(label="Top-K", minimum=0, maximum=100, step=1, value=50, info="0 to disable")
|
| 234 |
+
gr.Slider(label="Top-P (Nucleus Sampling)", minimum=0.0, maximum=1.0, step=0.05, value=0.95, info="0 to disable")
|
| 235 |
+
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.1, value=1.2)
|
| 236 |
+
gr.Slider(label="Number of Beams", minimum=1, maximum=8, step=1, value=4)
|
| 237 |
+
|
| 238 |
+
with gr.TabItem("π΄ Live Meeting Recording & Summarization"):
|
| 239 |
+
gr.Markdown("### Live Meeting Transcription & Summarization")
|
| 240 |
+
gr.Markdown("Record audio from your microphone, get a live transcript, and generate a summary.")
|
| 241 |
+
|
| 242 |
+
live_transcript_state = gr.State("")
|
| 243 |
+
|
| 244 |
+
with gr.Row():
|
| 245 |
+
with gr.Column(scale=1):
|
| 246 |
+
audio_input = gr.Audio(
|
| 247 |
+
label="Live Audio",
|
| 248 |
+
sources="microphone",
|
| 249 |
+
streaming=True,
|
| 250 |
+
)
|
| 251 |
+
with gr.Column(scale=2):
|
| 252 |
+
live_transcript_output = gr.Textbox(
|
| 253 |
+
label="Live Transcript",
|
| 254 |
+
placeholder="Transcript will appear here...",
|
| 255 |
+
lines=15,
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
with gr.Row():
|
| 259 |
+
with gr.Column(scale=1):
|
| 260 |
+
live_summary_length = gr.Dropdown(
|
| 261 |
+
choices=["Short", "Medium", "Long"],
|
| 262 |
+
value="Medium",
|
| 263 |
+
label="Summary Length"
|
| 264 |
+
)
|
| 265 |
+
live_summary_btn = gr.Button("Generate Summary", variant="primary")
|
| 266 |
+
|
| 267 |
+
with gr.Column(scale=2):
|
| 268 |
+
live_summary_output = gr.Textbox(
|
| 269 |
+
label="Meeting Summary",
|
| 270 |
+
placeholder="Summary will appear here...",
|
| 271 |
+
lines=5,
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
audio_input.stream(
|
| 275 |
+
fn=summarizer.transcribe_stream,
|
| 276 |
+
inputs=[audio_input, live_transcript_state],
|
| 277 |
+
outputs=[live_transcript_output, live_transcript_state],
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
def generate_live_summary(transcript, length_option):
|
| 281 |
+
max_len = {"Short": 100, "Medium": 150, "Long": 250}[length_option]
|
| 282 |
+
min_len = max_len // 3
|
| 283 |
+
return summarizer.summarize_text(transcript, max_length=max_len, min_length=min_len)
|
| 284 |
+
|
| 285 |
+
live_summary_btn.click(
|
| 286 |
+
fn=generate_live_summary,
|
| 287 |
+
inputs=[live_transcript_output, live_summary_length],
|
| 288 |
+
outputs=[live_summary_output],
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
submit_btn.click(
|
| 292 |
+
fn=summarizer.process_file,
|
| 293 |
+
inputs=[uploaded_file_state, summary_length],
|
| 294 |
+
outputs=output
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
return interface
|
| 298 |
+
|
| 299 |
+
if __name__ == "__main__":
|
| 300 |
+
interface = create_interface()
|
| 301 |
+
interface.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.44.1
|
| 2 |
+
transformers==4.35.2
|
| 3 |
+
torch==2.1.1
|
| 4 |
+
openai-whisper==20231117
|
| 5 |
+
PyPDF2==3.0.1
|
| 6 |
+
python-docx==1.1.0
|
| 7 |
+
datasets==2.14.6
|
| 8 |
+
accelerate==0.24.1
|
| 9 |
+
sentencepiece==0.1.99
|
| 10 |
+
protobuf==4.25.0
|