File size: 25,034 Bytes
20706fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
import os
import base64
import io
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from dash import Dash, html, dcc, Input, Output, State, callback_context
import dash_bootstrap_components as dbc
import numpy as np
from scipy import stats
import re

# Initialize Dash app
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
server = app.server

class AIVisualizationEngine:
    def __init__(self, df):
        self.df = df
        self.numeric_cols = df.select_dtypes(include=['number']).columns.tolist()
        self.categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
        self.datetime_cols = df.select_dtypes(include=['datetime64']).columns.tolist()
    
    def recommend_chart_type(self, x_col=None, y_col=None):
        """AI-powered chart type recommendation"""
        recommendations = []
        
        if x_col and y_col:
            x_type = 'numeric' if x_col in self.numeric_cols else 'categorical'
            y_type = 'numeric' if y_col in self.numeric_cols else 'categorical'
            
            if x_type == 'numeric' and y_type == 'numeric':
                recommendations = [
                    {'type': 'scatter', 'confidence': 0.9, 'reason': 'Both variables are numeric - scatter plot shows correlation'},
                    {'type': 'line', 'confidence': 0.7, 'reason': 'Line chart good for trends if X is ordered'},
                ]
            elif x_type == 'categorical' and y_type == 'numeric':
                recommendations = [
                    {'type': 'bar', 'confidence': 0.9, 'reason': 'Categorical vs numeric - bar chart shows comparisons'},
                    {'type': 'box', 'confidence': 0.8, 'reason': 'Box plot shows distribution across categories'},
                ]
            elif x_type == 'categorical' and y_type == 'categorical':
                recommendations = [
                    {'type': 'bar', 'confidence': 0.8, 'reason': 'Count relationships between categories'},
                ]
        elif x_col and not y_col:
            if x_col in self.numeric_cols:
                recommendations = [
                    {'type': 'histogram', 'confidence': 0.9, 'reason': 'Single numeric variable - histogram shows distribution'},
                    {'type': 'box', 'confidence': 0.7, 'reason': 'Box plot shows statistical summary'},
                ]
            else:
                recommendations = [
                    {'type': 'pie', 'confidence': 0.8, 'reason': 'Categorical variable - pie chart shows proportions'},
                    {'type': 'bar', 'confidence': 0.9, 'reason': 'Bar chart shows category frequencies'},
                ]
        
        return recommendations
    
    def detect_outliers(self, column):
        """Detect outliers using IQR method"""
        if column not in self.numeric_cols:
            return []
        
        Q1 = self.df[column].quantile(0.25)
        Q3 = self.df[column].quantile(0.75)
        IQR = Q3 - Q1
        lower_bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR
        
        outliers = self.df[(self.df[column] < lower_bound) | (self.df[column] > upper_bound)]
        return outliers.index.tolist()
    
    def generate_insights(self, x_col, y_col=None):
        """Generate AI insights about the data"""
        insights = []
        
        if x_col in self.numeric_cols:
            mean_val = self.df[x_col].mean()
            median_val = self.df[x_col].median()
            std_val = self.df[x_col].std()
            
            insights.append(f"πŸ“Š {x_col}: Mean = {mean_val:.2f}, Median = {median_val:.2f}")
            
            if abs(mean_val - median_val) > std_val * 0.5:
                insights.append(f"⚠️ {x_col} distribution appears skewed")
            
            outliers = self.detect_outliers(x_col)
            if outliers:
                insights.append(f"🎯 Found {len(outliers)} potential outliers in {x_col}")
        
        if y_col and x_col in self.numeric_cols and y_col in self.numeric_cols:
            correlation = self.df[x_col].corr(self.df[y_col])
            if abs(correlation) > 0.7:
                strength = "strong" if abs(correlation) > 0.8 else "moderate"
                direction = "positive" if correlation > 0 else "negative"
                insights.append(f"πŸ”— {strength.title()} {direction} correlation ({correlation:.3f}) between {x_col} and {y_col}")
            elif abs(correlation) < 0.3:
                insights.append(f"πŸ“ˆ Weak correlation ({correlation:.3f}) between {x_col} and {y_col}")
        
        return insights
    
    def parse_natural_language_query(self, query):
        """Simple NLP to parse visualization requests"""
        query = query.lower().strip()
        
        # Extract chart types
        chart_keywords = {
            'scatter': ['scatter', 'correlation', 'relationship'],
            'bar': ['bar', 'compare', 'comparison', 'by'],
            'histogram': ['histogram', 'distribution', 'freq'],
            'line': ['line', 'trend', 'over time', 'timeline'],
            'box': ['box', 'quartile', 'median'],
            'pie': ['pie', 'proportion', 'percentage'],
            'heatmap': ['heatmap', 'correlation matrix']
        }
        
        suggested_chart = None
        for chart_type, keywords in chart_keywords.items():
            if any(keyword in query for keyword in keywords):
                suggested_chart = chart_type
                break
        
        # Extract column names
        mentioned_cols = []
        for col in self.df.columns:
            if col.lower() in query or col.lower().replace('_', ' ') in query:
                mentioned_cols.append(col)
        
        return {
            'chart_type': suggested_chart,
            'columns': mentioned_cols,
            'query': query
        }
    
    def get_smart_color_scheme(self, chart_type, column=None):
        """AI-powered color scheme selection"""
        color_schemes = {
            'scatter': 'Viridis',
            'line': 'Blues',
            'bar': 'Set3',
            'histogram': 'Plasma',
            'box': 'Set2',
            'pie': 'Pastel',
            'heatmap': 'RdBu_r'
        }
        return color_schemes.get(chart_type, 'Viridis')

# App layout with AI features
app.layout = dbc.Container([
    dbc.Row([
        dbc.Col([
            html.H1("πŸ€– AI-Enhanced Data Dashboard", className="text-center mb-4"),
            html.P("Upload data and let AI help you create intelligent visualizations!", 
                   className="text-center text-muted"),
            html.Hr(),
        ], width=12)
    ]),
    
    dbc.Row([
        dbc.Col([
            dbc.Card([
                dbc.CardBody([
                    html.H4("πŸ“ Data Upload", className="card-title"),
                    dcc.Upload(
                        id='upload-data',
                        children=html.Div([
                            'Drag and Drop or ',
                            html.A('Select Files')
                        ]),
                        style={
                            'width': '100%',
                            'height': '60px',
                            'lineHeight': '60px',
                            'borderWidth': '1px',
                            'borderStyle': 'dashed',
                            'borderRadius': '5px',
                            'textAlign': 'center',
                            'margin': '10px'
                        },
                        multiple=False,
                        accept='.csv,.xlsx,.txt'
                    ),
                    
                    html.Div(id='upload-status', className="mt-2"),
                    html.Hr(),
                    
                    html.H4("🎯 AI Query Interface", className="card-title"),
                    dbc.InputGroup([
                        dbc.Input(
                            id="ai-query",
                            placeholder="Try: 'Show scatter plot of age vs salary' or 'Bar chart of departments'",
                            type="text",
                        ),
                        dbc.Button(
                            "πŸ€– AI Create", 
                            id="ai-create-btn", 
                            color="primary",
                            n_clicks=0
                        )
                    ]),
                    
                    html.Div(id="ai-recommendations", className="mt-3"),
                    html.Hr(),
                    
                    html.H4("πŸ“Š Quick Analytics", className="card-title"),
                    dbc.ButtonGroup([
                        dbc.Button("Summary Stats", id="stats-btn", size="sm"),
                        dbc.Button("AI Insights", id="insights-btn", size="sm"),
                        dbc.Button("Outliers", id="outliers-btn", size="sm"),
                    ], className="w-100"),
                    
                    html.Div(id="quick-analytics", className="mt-3")
                ])
            ])
        ], width=4),
        
        dbc.Col([
            dbc.Card([
                dbc.CardBody([
                    html.H4("πŸ“ˆ AI-Enhanced Visualizations", className="card-title"),
                    
                    # Chart controls
                    dbc.Row([
                        dbc.Col([
                            html.Label("Chart Type:", className="form-label"),
                            dcc.Dropdown(
                                id='chart-type',
                                options=[
                                    {'label': 'AI Recommend', 'value': 'ai_recommend'},
                                    {'label': 'Scatter Plot', 'value': 'scatter'},
                                    {'label': 'Line Chart', 'value': 'line'},
                                    {'label': 'Bar Chart', 'value': 'bar'},
                                    {'label': 'Histogram', 'value': 'histogram'},
                                    {'label': 'Box Plot', 'value': 'box'},
                                    {'label': 'Heatmap', 'value': 'heatmap'},
                                    {'label': 'Pie Chart', 'value': 'pie'}
                                ],
                                value='ai_recommend',
                                className="mb-2"
                            )
                        ], width=6),
                        dbc.Col([
                            html.Label("Color By:", className="form-label"),
                            dcc.Dropdown(
                                id='color-column',
                                placeholder="AI will suggest colors",
                                className="mb-2"
                            )
                        ], width=6)
                    ]),
                    
                    dbc.Row([
                        dbc.Col([
                            html.Label("X-Axis:", className="form-label"),
                            dcc.Dropdown(
                                id='x-column',
                                placeholder="Select X column"
                            )
                        ], width=6),
                        dbc.Col([
                            html.Label("Y-Axis:", className="form-label"),
                            dcc.Dropdown(
                                id='y-column',
                                placeholder="Select Y column"
                            )
                        ], width=6)
                    ], className="mb-3"),
                    
                    dcc.Graph(id='main-graph', style={'height': '500px'}),
                    
                    html.Div(id='ai-insights-display', className="mt-3")
                ])
            ]),
            
            dbc.Card([
                dbc.CardBody([
                    html.H4("πŸ” Data Explorer", className="card-title"),
                    html.Div(id='data-table')
                ])
            ], className="mt-3")
        ], width=8)
    ], className="mt-4"),
    
    # Store components
    dcc.Store(id='stored-data'),
    dcc.Store(id='ai-engine'),
], fluid=True)

def parse_contents(contents, filename):
    """Parse uploaded file contents"""
    content_type, content_string = contents.split(',')
    decoded = base64.b64decode(content_string)
    
    try:
        if 'csv' in filename:
            df = pd.read_csv(io.StringIO(decoded.decode('utf-8')))
        elif 'xls' in filename:
            df = pd.read_excel(io.BytesIO(decoded))
        else:
            return None, "Unsupported file type"
        
        return df, None
    except Exception as e:
        return None, f"Error processing file: {str(e)}"

@app.callback(
    [Output('stored-data', 'data'),
     Output('upload-status', 'children'),
     Output('data-table', 'children'),
     Output('x-column', 'options'),
     Output('y-column', 'options'),
     Output('color-column', 'options'),
     Output('x-column', 'value'),
     Output('y-column', 'value')],
    [Input('upload-data', 'contents')],
    [State('upload-data', 'filename')]
)
def update_data(contents, filename):
    """Update data when file is uploaded"""
    if contents is None:
        return None, "", "", [], [], [], None, None
    
    df, error = parse_contents(contents, filename)
    
    if error:
        return None, dbc.Alert(error, color="danger"), "", [], [], [], None, None
    
    # Create data table preview
    table = dbc.Table.from_dataframe(
        df.head(10), 
        striped=True, 
        bordered=True, 
        hover=True, 
        size='sm'
    )
    
    # AI analysis of dataset
    ai_engine = AIVisualizationEngine(df)
    
    success_msg = dbc.Alert([
        html.H6(f"βœ… File uploaded successfully! πŸ€– AI Ready"),
        html.P(f"Shape: {df.shape[0]} rows Γ— {df.shape[1]} columns"),
        html.P(f"πŸ“Š Numeric: {len(ai_engine.numeric_cols)}, πŸ“ Categorical: {len(ai_engine.categorical_cols)}")
    ], color="success")
    
    # Create column options for dropdowns
    all_columns = [{'label': col, 'value': col} for col in df.columns]
    
    # AI recommends default columns
    if ai_engine.numeric_cols:
        default_x = ai_engine.numeric_cols[0]
        default_y = ai_engine.numeric_cols[1] if len(ai_engine.numeric_cols) > 1 else None
    else:
        default_x = all_columns[0]['value'] if all_columns else None
        default_y = all_columns[1]['value'] if len(all_columns) > 1 else None
    
    return df.to_dict('records'), success_msg, table, all_columns, all_columns, all_columns, default_x, default_y

@app.callback(
    [Output('chart-type', 'value'),
     Output('ai-recommendations', 'children')],
    [Input('ai-create-btn', 'n_clicks')],
    [State('ai-query', 'value'),
     State('stored-data', 'data')]
)
def handle_ai_query(n_clicks, query, data):
    """Handle AI natural language queries"""
    if not n_clicks or not query or not data:
        return 'ai_recommend', ""
    
    df = pd.DataFrame(data)
    ai_engine = AIVisualizationEngine(df)
    
    # Parse the natural language query
    parsed = ai_engine.parse_natural_language_query(query)
    
    recommendations = []
    if parsed['chart_type']:
        recommendations.append(f"🎯 Suggested chart type: **{parsed['chart_type'].title()}**")
    
    if parsed['columns']:
        recommendations.append(f"πŸ“Š Detected columns: {', '.join(parsed['columns'])}")
    
    if not recommendations:
        recommendations.append("πŸ€– Try queries like: 'scatter age salary', 'bar chart departments', 'histogram of scores'")
    
    return parsed['chart_type'] or 'ai_recommend', dbc.Alert(recommendations, color="info")

@app.callback(
    Output('quick-analytics', 'children'),
    [Input('stats-btn', 'n_clicks'),
     Input('insights-btn', 'n_clicks'),
     Input('outliers-btn', 'n_clicks')],
    [State('stored-data', 'data'),
     State('x-column', 'value'),
     State('y-column', 'value')]
)
def quick_analytics(stats_clicks, insights_clicks, outliers_clicks, data, x_col, y_col):
    """Handle quick analytics buttons with AI insights"""
    if not data:
        return ""
    
    df = pd.DataFrame(data)
    ai_engine = AIVisualizationEngine(df)
    ctx = callback_context
    
    if not ctx.triggered:
        return ""
    
    button_id = ctx.triggered[0]['prop_id'].split('.')[0]
    
    if button_id == 'stats-btn':
        stats = df.describe()
        return dbc.Alert([
            html.H6("πŸ“Š Summary Statistics"),
            dbc.Table.from_dataframe(stats.reset_index(), size='sm')
        ], color="light")
    
    elif button_id == 'insights-btn':
        if x_col:
            insights = ai_engine.generate_insights(x_col, y_col)
            return dbc.Alert([
                html.H6("πŸ€– AI Insights"),
                html.Ul([html.Li(insight) for insight in insights])
            ], color="info")
        return dbc.Alert("Select columns to get AI insights", color="warning")
    
    elif button_id == 'outliers-btn':
        if x_col and x_col in ai_engine.numeric_cols:
            outliers = ai_engine.detect_outliers(x_col)
            if outliers:
                outlier_data = df.loc[outliers, [x_col]]
                return dbc.Alert([
                    html.H6(f"🎯 Outliers in {x_col}"),
                    dbc.Table.from_dataframe(outlier_data.reset_index(), size='sm')
                ], color="warning")
            return dbc.Alert(f"βœ… No outliers detected in {x_col}", color="success")
        return dbc.Alert("Select a numeric column to detect outliers", color="warning")
    
    return ""

@app.callback(
    [Output('main-graph', 'figure'),
     Output('ai-insights-display', 'children')],
    [Input('stored-data', 'data'),
     Input('chart-type', 'value'),
     Input('x-column', 'value'),
     Input('y-column', 'value'),
     Input('color-column', 'value')]
)
def update_main_graph(data, chart_type, x_col, y_col, color_col):
    """Update visualization with AI enhancements"""
    if not data:
        fig = go.Figure()
        fig.add_annotation(text="Upload data to see AI-powered visualizations", 
                         x=0.5, y=0.5, showarrow=False, 
                         font=dict(size=16, color="gray"))
        fig.update_layout(template="plotly_white")
        return fig, ""
    
    df = pd.DataFrame(data)
    ai_engine = AIVisualizationEngine(df)
    
    # AI recommendation system
    if chart_type == 'ai_recommend' and x_col:
        recommendations = ai_engine.recommend_chart_type(x_col, y_col)
        if recommendations:
            chart_type = recommendations[0]['type']
    
    # Handle cases where columns aren't selected yet
    if not x_col and not y_col:
        fig = go.Figure()
        fig.add_annotation(text="Select columns or use AI Query to create visualization", 
                         x=0.5, y=0.5, showarrow=False,
                         font=dict(size=16, color="gray"))
        fig.update_layout(template="plotly_white")
        return fig, ""
    
    insights_display = ""
    
    try:
        # Get AI-powered color scheme
        color_scheme = ai_engine.get_smart_color_scheme(chart_type, color_col)
        
        # Create visualization based on chart type
        if chart_type == 'scatter':
            if x_col and y_col:
                fig = px.scatter(df, x=x_col, y=y_col, color=color_col,
                               title=f"πŸ€– AI Scatter Plot: {y_col} vs {x_col}",
                               color_continuous_scale=color_scheme)
                # Add AI insights
                insights = ai_engine.generate_insights(x_col, y_col)
                insights_display = dbc.Alert([
                    html.H6("πŸ€– AI Insights"),
                    html.Ul([html.Li(insight) for insight in insights])
                ], color="info")
            else:
                fig = go.Figure()
                fig.add_annotation(text="Select both X and Y columns for scatter plot", 
                                 x=0.5, y=0.5, showarrow=False)
        
        elif chart_type == 'line':
            if x_col and y_col:
                fig = px.line(df, x=x_col, y=y_col, color=color_col,
                             title=f"πŸ€– AI Line Chart: {y_col} vs {x_col}",
                             color_discrete_sequence=px.colors.qualitative.Set3)
            else:
                fig = go.Figure()
                fig.add_annotation(text="Select both X and Y columns for line chart", 
                                 x=0.5, y=0.5, showarrow=False)
        
        elif chart_type == 'bar':
            if x_col and y_col:
                fig = px.bar(df, x=x_col, y=y_col, color=color_col,
                           title=f"πŸ€– AI Bar Chart: {y_col} by {x_col}",
                           color_discrete_sequence=px.colors.qualitative.Set3)
            elif x_col:
                fig = px.bar(df[x_col].value_counts().reset_index(), 
                           x='index', y=x_col,
                           title=f"πŸ€– AI Value Counts: {x_col}",
                           color_discrete_sequence=px.colors.qualitative.Set3)
            else:
                fig = go.Figure()
                fig.add_annotation(text="Select at least X column for bar chart", 
                                 x=0.5, y=0.5, showarrow=False)
        
        elif chart_type == 'histogram':
            if x_col:
                fig = px.histogram(df, x=x_col, color=color_col,
                                 title=f"πŸ€– AI Histogram: {x_col}",
                                 color_discrete_sequence=px.colors.qualitative.Pastel)
                # Add statistical annotations
                mean_val = df[x_col].mean() if x_col in ai_engine.numeric_cols else None
                if mean_val:
                    fig.add_vline(x=mean_val, line_dash="dash", line_color="red",
                                annotation_text=f"Mean: {mean_val:.2f}")
            else:
                fig = go.Figure()
                fig.add_annotation(text="Select X column for histogram", 
                                 x=0.5, y=0.5, showarrow=False)
        
        elif chart_type == 'box':
            if y_col:
                fig = px.box(df, x=color_col, y=y_col,
                           title=f"πŸ€– AI Box Plot: {y_col}" + (f" by {color_col}" if color_col else ""),
                           color_discrete_sequence=px.colors.qualitative.Set2)
            elif x_col:
                fig = px.box(df, y=x_col,
                           title=f"πŸ€– AI Box Plot: {x_col}",
                           color_discrete_sequence=px.colors.qualitative.Set2)
            else:
                fig = go.Figure()
                fig.add_annotation(text="Select a column for box plot", 
                                 x=0.5, y=0.5, showarrow=False)
        
        elif chart_type == 'heatmap':
            numeric_cols = df.select_dtypes(include=['number']).columns
            if len(numeric_cols) > 1:
                corr_matrix = df[numeric_cols].corr()
                fig = px.imshow(corr_matrix, 
                              text_auto=True, 
                              aspect="auto",
                              title="πŸ€– AI Correlation Heatmap",
                              color_continuous_scale='RdBu_r')
            else:
                fig = go.Figure()
                fig.add_annotation(text="Need at least 2 numeric columns for heatmap", 
                                 x=0.5, y=0.5, showarrow=False)
        
        elif chart_type == 'pie':
            if x_col:
                value_counts = df[x_col].value_counts()
                fig = px.pie(values=value_counts.values, 
                           names=value_counts.index,
                           title=f"πŸ€– AI Pie Chart: {x_col}",
                           color_discrete_sequence=px.colors.qualitative.Pastel)
            else:
                fig = go.Figure()
                fig.add_annotation(text="Select X column for pie chart", 
                                 x=0.5, y=0.5, showarrow=False)
        
        else:
            fig = go.Figure()
            fig.add_annotation(text="πŸ€– AI is analyzing... Select chart type or use AI Query", 
                             x=0.5, y=0.5, showarrow=False)
        
        # Apply AI styling enhancements
        fig.update_layout(
            template="plotly_white", 
            height=500,
            font=dict(size=12),
            title_font_size=16,
        )
        
        return fig, insights_display
        
    except Exception as e:
        fig = go.Figure()
        fig.add_annotation(text=f"AI Error: {str(e)}", 
                         x=0.5, y=0.5, showarrow=False,
                         font=dict(color="red"))
        fig.update_layout(template="plotly_white")
        return fig, ""

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=8051, debug=True)