File size: 14,769 Bytes
c4848ed e153726 c4848ed b19a39d c4848ed d2ef69d e153726 c4848ed b19a39d da23c4f b19a39d d2ef69d b19a39d d2ef69d b19a39d c4848ed e153726 c4848ed b19a39d c4848ed b19a39d c4848ed b19a39d c4848ed b19a39d c4848ed b19a39d c4848ed b19a39d c4848ed b19a39d c4848ed b19a39d c4848ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import os
import base64
import io
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from dash import Dash, html, dcc, Input, Output, State, callback_context
import dash_bootstrap_components as dbc
from typing import Optional
from dotenv import load_dotenv
from pydantic import Field, SecretStr
# Fixed Langchain imports (using langchain-huggingface for v0.2+)
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from langchain_openai import ChatOpenAI
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
# Load environment variables
load_dotenv()
class ChatOpenRouter(ChatOpenAI):
def __init__(self,
openai_api_key: Optional[str] = None,
**kwargs):
openai_api_key = openai_api_key or os.environ.get("OPENROUTER_API_KEY")
super().__init__(
base_url="https://openrouter.ai/api/v1",
openai_api_key=openai_api_key,
**kwargs
)
# Initialize OpenRouter model
openrouter_model = ChatOpenRouter(
model="microsoft/phi-4-reasoning-plus",
temperature=0.3,
max_tokens=1500,
model_kwargs={
"top_p": 0.9,
"frequency_penalty": 0.0,
"presence_penalty": 0.0
},
streaming=False
)
# Initialize Dash app
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
server = app.server
# Initialize Langchain components (removed @st.cache_resource)
def init_langchain():
"""Initialize Langchain components"""
try:
# Use a lightweight model for embeddings
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'}
)
# Initialize text splitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
return embeddings, text_splitter
except Exception as e:
print(f"Error initializing Langchain: {e}")
return None, None
# Global variables
embeddings, text_splitter = init_langchain()
vector_store = None
# App layout
app.layout = dbc.Container([
dbc.Row([
dbc.Col([
html.H1("π€ AI-Powered Data Analytics", className="text-center mb-4"),
html.P("Upload data, ask questions, and get AI-powered insights!",
className="text-center text-muted"),
html.Hr(),
], width=12)
]),
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4("π Data Upload", className="card-title"),
dcc.Upload(
id='upload-data',
children=html.Div([
'Drag and Drop or ',
html.A('Select Files')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px'
},
multiple=False,
accept='.csv,.xlsx,.txt'
),
html.Div(id='upload-status', className="mt-2"),
html.Hr(),
html.H4("π€ AI Assistant", className="card-title"),
dbc.InputGroup([
dbc.Input(
id="ai-question",
placeholder="Ask questions about your data...",
type="text",
style={"fontSize": "14px"}
),
dbc.Button(
"Ask AI",
id="ask-button",
color="primary",
n_clicks=0
)
]),
html.Div(id="ai-response", className="mt-3"),
html.Hr(),
html.H4("π Quick Analytics", className="card-title"),
dbc.ButtonGroup([
dbc.Button("Summary Stats", id="stats-btn", size="sm"),
dbc.Button("Correlations", id="corr-btn", size="sm"),
dbc.Button("Missing Data", id="missing-btn", size="sm"),
], className="w-100"),
html.Div(id="quick-analytics", className="mt-3")
])
])
], width=4),
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4("π Visualizations", className="card-title"),
dcc.Graph(id='main-graph', style={'height': '400px'}),
])
]),
dbc.Card([
dbc.CardBody([
html.H4("π Data Explorer", className="card-title"),
html.Div(id='data-table')
])
], className="mt-3")
], width=8)
], className="mt-4"),
# Store components
dcc.Store(id='stored-data'),
dcc.Store(id='data-context')
], fluid=True)
def create_vector_store(df):
"""Create vector store from dataframe"""
global vector_store
if embeddings is None:
return False
try:
# Convert dataframe to documents
documents = []
# Add column information
col_info = f"Dataset has {len(df)} rows and {len(df.columns)} columns.\n"
col_info += f"Columns: {', '.join(df.columns)}\n"
col_info += f"Data types: {df.dtypes.to_string()}\n"
documents.append(Document(page_content=col_info, metadata={"type": "schema"}))
# Add summary statistics
summary = df.describe().to_string()
documents.append(Document(page_content=f"Summary statistics:\n{summary}",
metadata={"type": "statistics"}))
# Add sample rows
sample_data = df.head(10).to_string()
documents.append(Document(page_content=f"Sample data:\n{sample_data}",
metadata={"type": "sample"}))
# Add correlation information for numeric columns
numeric_cols = df.select_dtypes(include=['number']).columns
if len(numeric_cols) > 1:
corr = df[numeric_cols].corr().to_string()
documents.append(Document(page_content=f"Correlations:\n{corr}",
metadata={"type": "correlation"}))
# Create vector store
vector_store = FAISS.from_documents(documents, embeddings)
return True
except Exception as e:
print(f"Error creating vector store: {e}")
return False
def get_ai_response(question, df):
"""Get AI response using OpenRouter LLM and RAG"""
global vector_store
if vector_store is None:
return "Please upload data first to enable AI features."
try:
# Create data context for the LLM
data_context = f"""
Dataset Information:
- Shape: {df.shape[0]} rows Γ {df.shape[1]} columns
- Columns: {', '.join(df.columns)}
- Data Types: {df.dtypes.to_dict()}
- Missing Values: {df.isnull().sum().to_dict()}
Sample Data (first 5 rows):
{df.head().to_string()}
Summary Statistics:
{df.describe().to_string()}
"""
# Create a prompt template for data analysis
prompt_template = PromptTemplate(
input_variables=["question", "data_context"],
template="""
You are a professional data analyst AI assistant. Based on the provided dataset information, answer the user's question with clear, actionable insights.
Dataset Context:
{data_context}
User Question: {question}
Please provide a helpful, accurate response with:
1. Direct answer to the question
2. Key insights or patterns you notice
3. Recommendations or next steps if applicable
Use emojis and markdown formatting to make your response engaging and easy to read.
"""
)
# Create LLM chain
llm_chain = LLMChain(
llm=openrouter_model,
prompt=prompt_template
)
# Get response from OpenRouter
response = llm_chain.run(
question=question,
data_context=data_context
)
return response
except Exception as e:
# Fallback to basic responses if OpenRouter fails
print(f"OpenRouter error: {e}")
return f"""π€ **AI Assistant** (Limited Mode):
I encountered an issue with the AI service. Here's basic info about your data:
π **Quick Summary**:
- Shape: {df.shape[0]} rows Γ {df.shape[1]} columns
- Columns: {', '.join(df.columns)}
- Missing values: {df.isnull().sum().sum()} total
Please check your OPENROUTER_API_KEY configuration.
"""
def parse_contents(contents, filename):
"""Parse uploaded file contents"""
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
try:
if 'csv' in filename:
df = pd.read_csv(io.StringIO(decoded.decode('utf-8')))
elif 'xls' in filename:
df = pd.read_excel(io.BytesIO(decoded))
else:
return None, "Unsupported file type"
return df, None
except Exception as e:
return None, f"Error processing file: {str(e)}"
@app.callback(
[Output('stored-data', 'data'),
Output('upload-status', 'children'),
Output('data-table', 'children')],
[Input('upload-data', 'contents')],
[State('upload-data', 'filename')]
)
def update_data(contents, filename):
"""Update data when file is uploaded"""
if contents is None:
return None, "", ""
df, error = parse_contents(contents, filename)
if error:
return None, dbc.Alert(error, color="danger"), ""
# Create vector store for AI
vector_success = create_vector_store(df)
# Create data table preview
table = dbc.Table.from_dataframe(
df.head(10),
striped=True,
bordered=True,
hover=True,
size='sm'
)
ai_status = "π€ AI Ready" if vector_success else "β οΈ AI Limited"
success_msg = dbc.Alert([
html.H6(f"β
File uploaded successfully! {ai_status}"),
html.P(f"Shape: {df.shape[0]} rows Γ {df.shape[1]} columns"),
html.P(f"Columns: {', '.join(df.columns.tolist())}")
], color="success")
return df.to_dict('records'), success_msg, table
@app.callback(
Output('ai-response', 'children'),
[Input('ask-button', 'n_clicks')],
[State('ai-question', 'value'),
State('stored-data', 'data')]
)
def handle_ai_question(n_clicks, question, data):
"""Handle AI question"""
if not n_clicks or not question or not data:
return ""
df = pd.DataFrame(data)
response = get_ai_response(question, df)
return dbc.Alert(
dcc.Markdown(response),
color="info"
)
@app.callback(
Output('quick-analytics', 'children'),
[Input('stats-btn', 'n_clicks'),
Input('corr-btn', 'n_clicks'),
Input('missing-btn', 'n_clicks')],
[State('stored-data', 'data')]
)
def quick_analytics(stats_clicks, corr_clicks, missing_clicks, data):
"""Handle quick analytics buttons"""
if not data:
return ""
df = pd.DataFrame(data)
ctx = callback_context
if not ctx.triggered:
return ""
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
if button_id == 'stats-btn':
stats = df.describe()
return dbc.Alert([
html.H6("π Summary Statistics"),
dbc.Table.from_dataframe(stats.reset_index(), size='sm')
], color="light")
elif button_id == 'corr-btn':
numeric_df = df.select_dtypes(include=['number'])
if len(numeric_df.columns) > 1:
corr = numeric_df.corr()
fig = px.imshow(corr, text_auto=True, aspect="auto",
title="Correlation Matrix")
return dcc.Graph(figure=fig, style={'height': '300px'})
return dbc.Alert("No numeric columns for correlation analysis", color="warning")
elif button_id == 'missing-btn':
missing = df.isnull().sum()
missing = missing[missing > 0]
if missing.empty:
return dbc.Alert("β
No missing values!", color="success")
return dbc.Alert([
html.H6("β οΈ Missing Values"),
html.Pre(missing.to_string())
], color="warning")
return ""
@app.callback(
Output('main-graph', 'figure'),
[Input('stored-data', 'data')]
)
def update_main_graph(data):
"""Update main visualization"""
if not data:
return {}
df = pd.DataFrame(data)
# Create a smart default visualization
numeric_cols = df.select_dtypes(include=['number']).columns
categorical_cols = df.select_dtypes(include=['object']).columns
if len(numeric_cols) >= 2:
# Scatter plot for numeric data
fig = px.scatter(df, x=numeric_cols[0], y=numeric_cols[1],
title=f"Relationship: {numeric_cols[1]} vs {numeric_cols[0]}")
elif len(numeric_cols) >= 1 and len(categorical_cols) >= 1:
# Bar chart for mixed data
fig = px.bar(df, x=categorical_cols[0], y=numeric_cols[0],
title=f"Distribution: {numeric_cols[0]} by {categorical_cols[0]}")
elif len(numeric_cols) >= 1:
# Histogram for single numeric
fig = px.histogram(df, x=numeric_cols[0],
title=f"Distribution of {numeric_cols[0]}")
else:
# Default message
fig = go.Figure()
fig.add_annotation(text="Upload data to see visualizations",
x=0.5, y=0.5, showarrow=False)
fig.update_layout(template="plotly_white")
return fig
if __name__ == '__main__':
app.run_server(host='0.0.0.0', port=7860, debug=False) |