Spaces:
Sleeping
Sleeping
File size: 34,453 Bytes
a8592c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 |
import hashlib
import json
import pickle
from datetime import datetime
from pathlib import Path
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from datasets import load_dataset
from tqdm import tqdm
# Cache configuration
global CACHE_DIR
global TASKS_INDEX_FILE
global TASK_DATA_DIR
global DATASET_DATA_DIR
global METRICS_INDEX_FILE
CACHE_DIR = Path("./pwc_cache")
CACHE_DIR.mkdir(exist_ok=True)
# Directory structure for disk-based storage
TASKS_INDEX_FILE = CACHE_DIR / "tasks_index.json" # Small JSON file with task list
TASK_DATA_DIR = CACHE_DIR / "task_data" # Directory for individual task files
DATASET_DATA_DIR = CACHE_DIR / "dataset_data" # Directory for individual dataset files
METRICS_INDEX_FILE = CACHE_DIR / "metrics_index.json" # Metrics metadata
# Create directories
TASK_DATA_DIR.mkdir(exist_ok=True)
DATASET_DATA_DIR.mkdir(exist_ok=True)
def sanitize_filename(name):
"""Convert a string to a safe filename."""
# Replace problematic characters with underscores
safe_name = name.replace('/', '_').replace('\\', '_').replace(':', '_')
safe_name = safe_name.replace('*', '_').replace('?', '_').replace('"', '_')
safe_name = safe_name.replace('<', '_').replace('>', '_').replace('|', '_')
safe_name = safe_name.replace(' ', '_').replace('.', '_')
# Remove multiple underscores and trim
safe_name = '_'.join(filter(None, safe_name.split('_')))
# Limit length to avoid filesystem issues
if len(safe_name) > 200:
# If too long, use first 150 chars + hash of full name
safe_name = safe_name[:150] + '_' + hashlib.md5(name.encode()).hexdigest()[:8]
return safe_name
def get_task_filename(task):
"""Generate a safe filename for a task."""
safe_name = sanitize_filename(task)
return TASK_DATA_DIR / f"task_{safe_name}.pkl"
def get_dataset_filename(task, dataset_name):
"""Generate a safe filename for a dataset."""
safe_task = sanitize_filename(task)
safe_dataset = sanitize_filename(dataset_name)
# Include both task and dataset in filename for clarity
filename = f"data_{safe_task}_{safe_dataset}.pkl"
# If combined name is too long, shorten it
if len(filename) > 255:
# Use shorter version with hash
filename = f"data_{safe_task[:50]}_{safe_dataset[:50]}_{hashlib.md5(f'{task}||{dataset_name}'.encode()).hexdigest()[:8]}.pkl"
return DATASET_DATA_DIR / filename
def cache_exists():
"""Check if cache structure exists."""
print(f"{TASKS_INDEX_FILE =}")
print(f"{METRICS_INDEX_FILE =}")
print(f"{TASKS_INDEX_FILE.exists() =}")
print(f"{METRICS_INDEX_FILE.exists() =}")
return TASKS_INDEX_FILE.exists() and METRICS_INDEX_FILE.exists()
def build_disk_based_cache():
"""Build cache with minimal memory usage - process dataset in streaming fashion."""
import os
print("Michael test", os.path.isdir("./pwc_cache"))
print("=" * 60)
print("=" * 60)
print("Building disk-based cache (one-time operation)...")
print("=" * 60)
# Initialize tracking structures (kept small)
tasks_set = set()
metrics_index = {}
print("\n[1/4] Streaming dataset and building cache...")
# Load dataset in streaming mode to save memory
ds = load_dataset("pwc-archive/evaluation-tables", split="train", streaming=False)
total_items = len(ds)
processed_count = 0
dataset_count = 0
for idx, item in tqdm(enumerate(ds), total=total_items):
# Progress indicator
task = item['task']
if not task:
continue
tasks_set.add(task)
# Load existing task data from disk or create new
task_file = get_task_filename(task)
if task_file.exists():
with open(task_file, 'rb') as f:
task_data = pickle.load(f)
else:
task_data = {
'categories': set(),
'datasets': set(),
'date_range': {'min': None, 'max': None}
}
# Update task data
if item['categories']:
task_data['categories'].update(item['categories'])
# Process datasets
if item['datasets']:
for dataset in item['datasets']:
if not isinstance(dataset, dict) or 'dataset' not in dataset:
continue
dataset_name = dataset['dataset']
dataset_file = get_dataset_filename(task, dataset_name)
# Skip if already processed
if dataset_file.exists():
task_data['datasets'].add(dataset_name)
continue
task_data['datasets'].add(dataset_name)
# Process SOTA data
if 'sota' not in dataset or 'rows' not in dataset['sota']:
continue
models_data = []
for row in dataset['sota']['rows']:
if not isinstance(row, dict):
continue
model_name = row.get('model_name', 'Unknown Model')
# Extract metrics
metrics = {}
if 'metrics' in row and isinstance(row['metrics'], dict):
for metric_name, metric_value in row['metrics'].items():
if metric_value is not None:
metrics[metric_name] = metric_value
# Track metric metadata
if metric_name not in metrics_index:
metrics_index[metric_name] = {
'count': 0,
'is_lower_better': any(kw in metric_name.lower()
for kw in ['error', 'loss', 'time', 'cost'])
}
metrics_index[metric_name]['count'] += 1
# Parse date
paper_date = row.get('paper_date')
try:
if paper_date and isinstance(paper_date, str):
release_date = pd.to_datetime(paper_date)
else:
release_date = pd.to_datetime('2020-01-01')
except:
release_date = pd.to_datetime('2020-01-01')
# Update date range
if task_data['date_range']['min'] is None or release_date < task_data['date_range']['min']:
task_data['date_range']['min'] = release_date
if task_data['date_range']['max'] is None or release_date > task_data['date_range']['max']:
task_data['date_range']['max'] = release_date
# Build model entry
model_entry = {
'model_name': model_name,
'release_date': release_date,
'paper_date': row.get('paper_date', ''), # Store raw paper_date for dynamic parsing
'paper_url': row.get('paper_url', ''),
'paper_title': row.get('paper_title', ''),
'code_url': row.get('code_links', [''])[0] if row.get('code_links') else '',
**metrics
}
models_data.append(model_entry)
if models_data:
df = pd.DataFrame(models_data)
df = df.sort_values('release_date')
# Save dataset to its own file
with open(dataset_file, 'wb') as f:
pickle.dump(df, f, protocol=pickle.HIGHEST_PROTOCOL)
dataset_count += 1
# Clear DataFrame from memory
del df
del models_data
# Save updated task data back to disk
with open(task_file, 'wb') as f:
# Convert sets to lists for serialization
task_data_to_save = {
'categories': sorted(list(task_data['categories'])),
'datasets': sorted(list(task_data['datasets'])),
'date_range': task_data['date_range']
}
pickle.dump(task_data_to_save, f, protocol=pickle.HIGHEST_PROTOCOL)
# Clear task data from memory
del task_data
processed_count += 1
print(f"\nβ Processed {len(tasks_set)} tasks and {dataset_count} datasets")
print("\n[2/4] Saving index files...")
# Save tasks index (small file)
tasks_list = sorted(list(tasks_set))
with open(TASKS_INDEX_FILE, 'w') as f:
json.dump(tasks_list, f)
print(f" β Saved tasks index ({len(tasks_list)} tasks)")
# Save metrics index
with open(METRICS_INDEX_FILE, 'w') as f:
json.dump(metrics_index, f, indent=2)
print(f" β Saved metrics index ({len(metrics_index)} metrics)")
print("\n[3/4] Calculating cache statistics...")
# Calculate total cache size
total_size = 0
for file in TASK_DATA_DIR.glob("*.pkl"):
total_size += file.stat().st_size
for file in DATASET_DATA_DIR.glob("*.pkl"):
total_size += file.stat().st_size
print(f" β Total cache size: {total_size / 1024 / 1024:.1f} MB")
print(f" β Task files: {len(list(TASK_DATA_DIR.glob('*.pkl')))}")
print(f" β Dataset files: {len(list(DATASET_DATA_DIR.glob('*.pkl')))}")
print("\n[4/4] Cache building complete!")
print("=" * 60)
return tasks_list
def load_tasks_index():
"""Load just the task list from disk."""
with open(TASKS_INDEX_FILE, 'r') as f:
return json.load(f)
def load_task_data(task):
"""Load data for a specific task from disk."""
task_file = get_task_filename(task)
if task_file.exists():
with open(task_file, 'rb') as f:
return pickle.load(f)
return None
def load_dataset_data(task, dataset_name):
"""Load a specific dataset from disk."""
dataset_file = get_dataset_filename(task, dataset_name)
if dataset_file.exists():
with open(dataset_file, 'rb') as f:
return pickle.load(f)
return pd.DataFrame()
def load_metrics_index():
"""Load metrics index from disk."""
if METRICS_INDEX_FILE.exists():
with open(METRICS_INDEX_FILE, 'r') as f:
return json.load(f)
return {}
# Initialize - build cache if doesn't exist
if cache_exists():
print("Loading task index from disk...")
TASKS = load_tasks_index()
print(f"β Loaded {len(TASKS)} tasks")
else:
TASKS = build_disk_based_cache()
# Load metrics index once (it's small)
METRICS_INDEX = load_metrics_index()
# Memory-efficient accessor functions
def get_tasks():
"""Get all tasks from index."""
return TASKS
def get_task_data(task):
"""Load task data from disk on-demand."""
return load_task_data(task)
def get_categories(task):
"""Get categories for a task (loads from disk)."""
task_data = get_task_data(task)
return task_data['categories'] if task_data else []
def get_datasets_for_task(task):
"""Get datasets for a task (loads from disk)."""
task_data = get_task_data(task)
return task_data['datasets'] if task_data else []
def get_cached_model_data(task, dataset_name):
"""Load dataset from disk on-demand."""
return load_dataset_data(task, dataset_name)
def parse_paper_date(paper_date, paper_title="", paper_url=""):
"""Parse paper date with improved fallback strategies."""
import re
# Try to parse the raw paper_date if available
if paper_date and isinstance(paper_date, str) and paper_date.strip():
try:
# Try common date formats
date_formats = [
'%Y-%m-%d',
'%Y/%m/%d',
'%d-%m-%Y',
'%d/%m/%Y',
'%Y-%m',
'%Y/%m',
'%Y'
]
for fmt in date_formats:
try:
return pd.to_datetime(paper_date.strip(), format=fmt)
except:
continue
# Try pandas automatic parsing
return pd.to_datetime(paper_date.strip())
except:
pass
# Fallback: try to extract year from paper title or URL
year_pattern = r'\b(19[5-9]\d|20[0-9]\d)\b' # Match 1950-2099
# Look for year in paper title
if paper_title:
years = re.findall(year_pattern, str(paper_title))
if years:
try:
year = max(years) # Use the latest year found
return pd.to_datetime(f'{year}-01-01')
except:
pass
# Look for year in paper URL
if paper_url:
years = re.findall(year_pattern, str(paper_url))
if years:
try:
year = max(years) # Use the latest year found
return pd.to_datetime(f'{year}-01-01')
except:
pass
# Final fallback: return None instead of a default year
return None
def get_task_statistics(task):
"""Get statistics about a task."""
return {}
def create_sota_plot(df, metric):
"""Create a plot showing model performance evolution over time.
Args:
df: DataFrame with model data
metric: Metric name to plot on y-axis
"""
if df.empty or metric not in df.columns:
fig = go.Figure()
fig.add_annotation(
text="No data available for this metric",
xref="paper",
yref="paper",
x=0.5,
y=0.5,
showarrow=False,
font=dict(size=20)
)
fig.update_layout(
title="No Data Available",
height=600,
plot_bgcolor='white',
paper_bgcolor='white'
)
return fig
# Remove rows where the metric is NaN
df_clean = df.dropna(subset=[metric]).copy()
if df_clean.empty:
fig = go.Figure()
fig.add_annotation(
text="No valid data points for this metric",
xref="paper",
yref="paper",
x=0.5,
y=0.5,
showarrow=False,
font=dict(size=20)
)
fig.update_layout(
title="No Data Available",
height=600,
plot_bgcolor='white',
paper_bgcolor='white'
)
return fig
# Convert metric column to numeric, handling any string values
try:
df_clean[metric] = pd.to_numeric(
df_clean[metric].apply(lambda x: x.strip()[:-1] if isinstance(x, str) and x.strip().endswith("%") else x),
errors='coerce')
# Remove any rows that couldn't be converted to numeric
df_clean = df_clean.dropna(subset=[metric])
if df_clean.empty:
fig = go.Figure()
fig.add_annotation(
text=f"No numeric data available for metric: {metric}",
xref="paper",
yref="paper",
x=0.5,
y=0.5,
showarrow=False,
font=dict(size=20)
)
fig.update_layout(
title="No Numeric Data Available",
height=600,
plot_bgcolor='white',
paper_bgcolor='white'
)
return fig
except Exception as e:
fig = go.Figure()
fig.add_annotation(
text=f"Error processing metric data: {str(e)}",
xref="paper",
yref="paper",
x=0.5,
y=0.5,
showarrow=False,
font=dict(size=16)
)
fig.update_layout(
title="Data Processing Error",
height=600,
plot_bgcolor='white',
paper_bgcolor='white'
)
return fig
# Recalculate release dates dynamically from raw paper_date if available
df_processed = df_clean.copy()
if 'paper_date' in df_processed.columns:
# Parse dates dynamically using improved logic
df_processed['dynamic_release_date'] = df_processed.apply(
lambda row: parse_paper_date(
row.get('paper_date', ''),
row.get('paper_title', ''),
row.get('paper_url', '')
), axis=1
)
# Use dynamic dates if available, otherwise fallback to original release_date
df_processed['final_release_date'] = df_processed['dynamic_release_date'].fillna(df_processed['release_date'])
else:
# If no paper_date column, use existing release_date
df_processed['final_release_date'] = df_processed['release_date']
# Filter out rows with no valid date
df_with_dates = df_processed[df_processed['final_release_date'].notna()].copy()
if df_with_dates.empty:
# If no valid dates, return empty plot
fig = go.Figure()
fig.add_annotation(
text="No valid dates available for this dataset",
xref="paper",
yref="paper",
x=0.5,
y=0.5,
showarrow=False,
font=dict(size=20)
)
fig.update_layout(
title="No Date Data Available",
height=600,
plot_bgcolor='white',
paper_bgcolor='white'
)
return fig
# Sort by final release date
df_sorted = df_with_dates.sort_values('final_release_date').copy()
# Check if metric is lower-better
is_lower_better = False
if metric in METRICS_INDEX:
is_lower_better = METRICS_INDEX[metric].get('is_lower_better', False)
else:
is_lower_better = any(keyword in metric.lower() for keyword in ['error', 'loss', 'time', 'cost'])
if is_lower_better:
df_sorted['cumulative_best'] = df_sorted[metric].cummin()
df_sorted['is_sota'] = df_sorted[metric] == df_sorted['cumulative_best']
else:
df_sorted['cumulative_best'] = df_sorted[metric].cummax()
df_sorted['is_sota'] = df_sorted[metric] == df_sorted['cumulative_best']
# Get SOTA models
sota_df = df_sorted[df_sorted['is_sota']].copy()
# Use the dynamically calculated dates for x-axis
x_values = df_sorted['final_release_date']
x_axis_title = 'Release Date'
# Create the plot
fig = go.Figure()
# Add all models as scatter points
fig.add_trace(go.Scatter(
x=x_values,
y=df_sorted[metric],
mode='markers',
name='All models',
marker=dict(
color=['#00CED1' if is_sota else 'lightgray'
for is_sota in df_sorted['is_sota']],
size=8,
opacity=0.7
),
text=df_sorted['model_name'],
customdata=df_sorted[['paper_title', 'paper_url', 'code_url']],
hovertemplate='<b>%{text}</b><br>' +
f'{metric}: %{{y:.4f}}<br>' +
'Date: %{x}<br>' +
'Paper: %{customdata[0]}<br>' +
'<extra></extra>'
))
# Add SOTA line
fig.add_trace(go.Scatter(
x=x_values,
y=df_sorted['cumulative_best'],
mode='lines',
name=f'SOTA (cumulative {"min" if is_lower_better else "max"})',
line=dict(color='#00CED1', width=2, dash='solid'),
hovertemplate=f'SOTA {metric}: %{{y:.4f}}<br>{x_axis_title}: %{{x}}<extra></extra>'
))
# Add labels for SOTA models
if not sota_df.empty:
# Calculate dynamic offset based on data range
y_range = df_sorted[metric].max() - df_sorted[metric].min()
# Use a percentage of the range for offset, with minimum and maximum bounds
if y_range > 0:
base_offset = y_range * 0.03 # 3% of the data range
# Ensure minimum offset for readability and maximum to prevent excessive spacing
label_offset = max(y_range * 0.01, min(base_offset, y_range * 0.08))
else:
# Fallback for when all values are the same
label_offset = 1
# Track label positions to prevent overlaps
previous_labels = []
# For date-based x-axis, use date separation
try:
date_range = (df_sorted['final_release_date'].max() - df_sorted['final_release_date'].min()).days
min_separation = max(30, date_range * 0.05) # Minimum 30 days or 5% of range
except (TypeError, AttributeError):
# Fallback if date calculation fails
min_separation = 30
for i, (_, row) in enumerate(sota_df.iterrows()):
# Determine base label position based on metric type
if is_lower_better:
# For lower-better metrics, place label above the point (negative ay)
base_ay_offset = -label_offset
base_yshift = -8
alternate_multiplier = -1
else:
# For higher-better metrics, place label below the point (positive ay)
base_ay_offset = label_offset
base_yshift = 8
alternate_multiplier = 1
# Check for collision with previous labels
current_x = row['final_release_date']
collision_detected = False
for prev_x, prev_ay in previous_labels:
try:
x_diff = abs((current_x - prev_x).days)
if x_diff < min_separation:
collision_detected = True
break
except (TypeError, AttributeError):
# Skip collision detection if calculation fails
continue
# Adjust position if collision detected
if collision_detected:
# Alternate the label position (above/below) to avoid overlap
ay_offset = base_ay_offset + (alternate_multiplier * label_offset * 0.7 * (i % 2))
yshift = base_yshift + (alternate_multiplier * 12 * (i % 2))
else:
ay_offset = base_ay_offset
yshift = base_yshift
# Add the annotation
fig.add_annotation(
x=current_x,
y=row[metric],
text=row['model_name'][:25] + '...' if len(row['model_name']) > 25 else row['model_name'],
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=1,
arrowcolor='#00CED1', # Match the SOTA line color
ax=0,
ay=ay_offset, # Dynamic offset based on data range and collision detection
yshift=yshift, # Fine-tune positioning
font=dict(size=8, color='#333333'),
bgcolor='rgba(255, 255, 255, 0.9)', # Semi-transparent background
borderwidth=0 # Remove border
)
# Track this label position
previous_labels.append((current_x, ay_offset))
# Update layout
fig.update_layout(
title=f'SOTA Evolution: {metric}',
xaxis_title=x_axis_title,
yaxis_title=metric,
xaxis=dict(showgrid=True, gridcolor='lightgray'),
yaxis=dict(showgrid=True, gridcolor='lightgray'),
plot_bgcolor='white',
paper_bgcolor='white',
height=600,
legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01),
hovermode='closest'
)
# Clear the DataFrame from memory after plotting
del df_clean
del df_sorted
del sota_df
return fig
# Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π Papers with Code - SOTA Evolution Visualizer")
gr.Markdown(
"Navigate through ML tasks and datasets to visualize the evolution of state-of-the-art models over time.")
gr.Markdown("*Optimized for low memory usage - data is loaded on-demand from disk*")
# Status
with gr.Row():
gr.Markdown(f"""
<div style="background-color: #f0f9ff; border-left: 4px solid #00CED1; padding: 10px; margin: 10px 0;">
<b>πΎ Disk-Based Storage Active</b><br>
β’ <b>{len(TASKS)}</b> tasks indexed<br>
β’ <b>{len(METRICS_INDEX)}</b> unique metrics tracked<br>
β’ Data loaded on-demand to minimize RAM usage
</div>
""")
# State variables
current_df = gr.State(pd.DataFrame())
current_task = gr.State(None)
# Navigation dropdowns
with gr.Row():
task_dropdown = gr.Dropdown(
choices=get_tasks(),
label="Select Task",
interactive=True
)
category_dropdown = gr.Dropdown(
choices=[],
label="Categories (info only)",
interactive=False
)
with gr.Row():
dataset_dropdown = gr.Dropdown(
choices=[],
label="Select Dataset",
interactive=True
)
metric_dropdown = gr.Dropdown(
choices=[],
label="Select Metric",
interactive=True
)
# Info display
info_text = gr.Markdown("π Please select a task to begin")
# Plot
plot = gr.Plot(label="SOTA Evolution")
# Data display
with gr.Row():
show_data_btn = gr.Button("π Show/Hide Model Data")
export_btn = gr.Button("πΎ Export Current Data (CSV)")
clear_memory_btn = gr.Button("π§Ή Clear Memory", variant="secondary")
df_display = gr.Dataframe(
label="Model Data",
visible=False
)
# Update functions
def update_task_selection(task):
"""Update dropdowns when task is selected."""
if not task:
return [], [], [], "π Please select a task to begin", pd.DataFrame(), None, None
# Load task data from disk
categories = get_categories(task)
datasets = get_datasets_for_task(task)
info = f"### π **Task:** {task}\n"
if categories:
info += f"- **Categories:** {', '.join(categories[:3])}{'...' if len(categories) > 3 else ''} ({len(categories)} total)\n"
return (
gr.Dropdown(choices=categories, value=categories[0] if categories else None),
gr.Dropdown(choices=datasets, value=None),
gr.Dropdown(choices=[], value=None),
info,
pd.DataFrame(),
None,
task # Store current task
)
def update_dataset_selection(task, dataset_name):
"""Update when dataset is selected - loads from disk."""
if not task or not dataset_name:
return [], "", pd.DataFrame(), None
# Load dataset from disk
df = get_cached_model_data(task, dataset_name)
if df.empty:
return [], f"β οΈ No models found for dataset: {dataset_name}", df, None
# Get metric columns
exclude_cols = ['model_name', 'release_date', 'paper_date', 'paper_url', 'paper_title', 'code_url']
metric_cols = [col for col in df.columns if col not in exclude_cols]
info = f"### π **Dataset:** {dataset_name}\n"
info += f"- **Models:** {len(df)} models\n"
info += f"- **Metrics:** {len(metric_cols)} metrics available\n"
if not df.empty:
info += f"- **Date Range:** {df['release_date'].min().strftime('%Y-%m-%d')} to {df['release_date'].max().strftime('%Y-%m-%d')}\n"
if metric_cols:
info += f"- **Available Metrics:** {', '.join(metric_cols[:5])}{'...' if len(metric_cols) > 5 else ''}"
return (
gr.Dropdown(choices=metric_cols, value=metric_cols[0] if metric_cols else None),
info,
df,
None
)
def update_plot(df, metric):
"""Update plot when metric is selected."""
if df.empty or not metric:
return None
plot_result = create_sota_plot(df, metric)
return plot_result
def toggle_dataframe(df):
"""Toggle dataframe visibility."""
if df.empty:
return gr.Dataframe(value=pd.DataFrame(), visible=False)
# Show relevant columns
display_cols = ['model_name', 'release_date'] + [col for col in df.columns
if col not in ['model_name', 'release_date', 'paper_date',
'paper_url',
'paper_title', 'code_url']]
display_df = df[display_cols].copy()
display_df['release_date'] = display_df['release_date'].dt.strftime('%Y-%m-%d')
return gr.Dataframe(value=display_df, visible=True)
def export_data(df):
"""Export current dataframe to CSV."""
if df.empty:
return "β οΈ No data to export"
filename = f"sota_export_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
df.to_csv(filename, index=False)
return f"β
Data exported to {filename} ({len(df)} models)"
def clear_memory():
"""Clear memory by forcing garbage collection."""
import gc
gc.collect()
return "β
Memory cleared"
# Event handlers
task_dropdown.change(
fn=update_task_selection,
inputs=task_dropdown,
outputs=[category_dropdown, dataset_dropdown,
metric_dropdown, info_text, current_df, plot, current_task]
)
dataset_dropdown.change(
fn=update_dataset_selection,
inputs=[task_dropdown, dataset_dropdown],
outputs=[metric_dropdown, info_text, current_df, plot]
)
metric_dropdown.change(
fn=update_plot,
inputs=[current_df, metric_dropdown],
outputs=plot
)
show_data_btn.click(
fn=toggle_dataframe,
inputs=current_df,
outputs=df_display
)
export_btn.click(
fn=export_data,
inputs=current_df,
outputs=info_text
)
clear_memory_btn.click(
fn=clear_memory,
inputs=[],
outputs=info_text
)
gr.Markdown("""
---
### π How to Use
1. **Select a Task** from the first dropdown
2. **Select a Dataset** to analyze
3. **Select a Metric** to visualize
4. The plot shows SOTA model evolution over time with dynamically calculated dates
### πΎ Memory Optimization
- Data is stored on disk and loaded on-demand
- Only the current task and dataset are kept in memory
- Use "Clear Memory" button if needed
- Infinite disk space is utilized for permanent caching
### π¨ Plot Features
- **π΅ Cyan dots**: SOTA models when released
- **βͺ Gray dots**: Other models
- **π Cyan line**: SOTA progression
- **π Hover**: View model details
- **π·οΈ Smart Labels**: SOTA model labels positioned close to the line with intelligent collision detection
""")
def test_sota_label_positioning():
"""Test function to validate SOTA label positioning improvements."""
print("π§ͺ Testing SOTA label positioning...")
# Create sample data for testing
import pandas as pd
from datetime import datetime
# Test data with different metric types (including all required columns)
test_data = {
'model_name': ['Model A', 'Model B', 'Model C', 'Model D'],
'release_date': [
datetime(2020, 1, 1),
datetime(2020, 6, 1),
datetime(2021, 1, 1),
datetime(2021, 6, 1)
],
'paper_title': ['Paper A', 'Paper B', 'Paper C', 'Paper D'],
'paper_url': ['http://example.com/a', 'http://example.com/b', 'http://example.com/c', 'http://example.com/d'],
'code_url': ['http://github.com/a', 'http://github.com/b', 'http://github.com/c', 'http://github.com/d'],
'accuracy': [0.85, 0.87, 0.90, 0.92], # Higher-better metric
'error_rate': [0.15, 0.13, 0.10, 0.08] # Lower-better metric
}
df_test = pd.DataFrame(test_data)
# Test with higher-better metric (accuracy)
print(" Testing with higher-better metric (accuracy)...")
try:
fig1 = create_sota_plot(df_test, 'accuracy')
print(" β
Higher-better metric test passed")
except Exception as e:
print(f" β Higher-better metric test failed: {e}")
# Test with lower-better metric (error_rate)
print(" Testing with lower-better metric (error_rate)...")
try:
fig2 = create_sota_plot(df_test, 'error_rate')
print(" β
Lower-better metric test passed")
except Exception as e:
print(f" β Lower-better metric test failed: {e}")
# Test with empty data
print(" Testing with empty dataframe...")
try:
fig3 = create_sota_plot(pd.DataFrame(), 'test_metric')
print(" β
Empty data test passed")
except Exception as e:
print(f" β Empty data test failed: {e}")
# Test with string metric data (should handle gracefully)
print(" Testing with string metric data...")
try:
df_test_string = df_test.copy()
df_test_string['string_metric'] = ['low', 'medium', 'high', 'very_high']
fig4 = create_sota_plot(df_test_string, 'string_metric')
print(" β
String metric test passed (handled gracefully)")
except Exception as e:
print(f" β String metric test failed: {e}")
# Test with mixed numeric/string data
print(" Testing with mixed data types...")
try:
df_test_mixed = df_test.copy()
df_test_mixed['mixed_metric'] = [0.85, 'N/A', 0.90, 0.92]
fig5 = create_sota_plot(df_test_mixed, 'mixed_metric')
print(" β
Mixed data test passed")
except Exception as e:
print(f" β Mixed data test failed: {e}")
# Test with paper_date parsing
print(" Testing with paper_date column...")
try:
df_test_dates = df_test.copy()
df_test_dates['paper_date'] = ['2015-03-15', '2018-invalid', '2021-12-01', '2022']
fig6 = create_sota_plot(df_test_dates, 'accuracy')
print(" β
Paper date parsing test passed")
except Exception as e:
print(f" β Paper date parsing test failed: {e}")
print("π SOTA label positioning tests completed!")
return True
demo.launch() |