xx
Browse files- .gitignore +2 -1
- app.py +81 -41
.gitignore
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
-
/env/*
|
|
|
|
|
|
| 1 |
+
/env/*
|
| 2 |
+
__pycache__/
|
app.py
CHANGED
|
@@ -29,20 +29,51 @@ def progress_bar_html(label: str) -> str:
|
|
| 29 |
model_name = "HuggingFaceTB/SmolVLM2-256M-Video-Instruct"
|
| 30 |
|
| 31 |
|
| 32 |
-
def model_inference(input_dict, history,
|
| 33 |
"""
|
| 34 |
Use Hugging Face InferenceClient (streaming) to perform the multimodal chat completion.
|
| 35 |
Signature matches ChatInterface call pattern: (input_dict, history, *additional_inputs)
|
| 36 |
The OAuth token (from gr.LoginButton) is passed as `hf_token`.
|
| 37 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
text = input_dict.get("text", "")
|
| 39 |
files = input_dict.get("files", []) or []
|
| 40 |
|
| 41 |
if text == "" and not files:
|
| 42 |
-
|
|
|
|
| 43 |
return
|
| 44 |
if text == "" and files:
|
| 45 |
-
|
| 46 |
return
|
| 47 |
|
| 48 |
# Build the content list: images (as URLs or data URLs) followed by the text
|
|
@@ -71,50 +102,58 @@ def model_inference(input_dict, history, hf_token: gr.OAuthToken):
|
|
| 71 |
messages = [{"role": "user", "content": content_list}]
|
| 72 |
|
| 73 |
if hf_token is None or not getattr(hf_token, "token", None):
|
| 74 |
-
|
| 75 |
-
"Please login with a Hugging Face account (use the Login button in the sidebar)."
|
| 76 |
-
)
|
| 77 |
return
|
| 78 |
|
| 79 |
-
|
|
|
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
|
| 84 |
-
|
| 85 |
-
try:
|
| 86 |
-
stream = client.chat.completions.create(messages=messages, stream=True)
|
| 87 |
-
except TypeError:
|
| 88 |
-
# older/newer client variants: try the alternative method name
|
| 89 |
-
stream = client.chat_completion(messages=messages, stream=True)
|
| 90 |
-
|
| 91 |
-
for chunk in stream:
|
| 92 |
-
# chunk can be an object with attributes or a dict depending on client version
|
| 93 |
-
token = ""
|
| 94 |
try:
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
delta = choices[0].get("delta", {})
|
| 100 |
-
token = delta.get("content") or ""
|
| 101 |
-
else:
|
| 102 |
-
# attribute-style
|
| 103 |
-
choices = getattr(chunk, "choices", None)
|
| 104 |
-
if choices and len(choices) > 0:
|
| 105 |
-
delta = getattr(choices[0], "delta", None)
|
| 106 |
-
if isinstance(delta, dict):
|
| 107 |
-
token = delta.get("content") or ""
|
| 108 |
-
else:
|
| 109 |
-
token = getattr(delta, "content", "")
|
| 110 |
-
except Exception:
|
| 111 |
-
token = ""
|
| 112 |
|
| 113 |
-
|
| 114 |
-
#
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
|
| 120 |
examples = [
|
|
@@ -150,7 +189,8 @@ with gr.Blocks() as demo:
|
|
| 150 |
additional_inputs=[login_btn],
|
| 151 |
)
|
| 152 |
|
| 153 |
-
|
|
|
|
| 154 |
|
| 155 |
|
| 156 |
if __name__ == "__main__":
|
|
|
|
| 29 |
model_name = "HuggingFaceTB/SmolVLM2-256M-Video-Instruct"
|
| 30 |
|
| 31 |
|
| 32 |
+
def model_inference(input_dict, history, *additional_inputs):
|
| 33 |
"""
|
| 34 |
Use Hugging Face InferenceClient (streaming) to perform the multimodal chat completion.
|
| 35 |
Signature matches ChatInterface call pattern: (input_dict, history, *additional_inputs)
|
| 36 |
The OAuth token (from gr.LoginButton) is passed as `hf_token`.
|
| 37 |
"""
|
| 38 |
+
# Extract hf_token from additional_inputs in a robust way (gradio sometimes passes extra args)
|
| 39 |
+
hf_token = None
|
| 40 |
+
for ai in additional_inputs:
|
| 41 |
+
if ai is None:
|
| 42 |
+
continue
|
| 43 |
+
# gradio may pass a small object with attribute `token`
|
| 44 |
+
if hasattr(ai, "token"):
|
| 45 |
+
hf_token = ai
|
| 46 |
+
break
|
| 47 |
+
# or a dict-like with a token key
|
| 48 |
+
if isinstance(ai, dict) and "token" in ai:
|
| 49 |
+
|
| 50 |
+
class _T:
|
| 51 |
+
pass
|
| 52 |
+
|
| 53 |
+
obj = _T()
|
| 54 |
+
obj.token = ai.get("token")
|
| 55 |
+
hf_token = obj
|
| 56 |
+
break
|
| 57 |
+
# or the token itself could be passed as a string
|
| 58 |
+
if isinstance(ai, str):
|
| 59 |
+
|
| 60 |
+
class _T2:
|
| 61 |
+
pass
|
| 62 |
+
|
| 63 |
+
obj = _T2()
|
| 64 |
+
obj.token = ai
|
| 65 |
+
hf_token = obj
|
| 66 |
+
break
|
| 67 |
+
|
| 68 |
text = input_dict.get("text", "")
|
| 69 |
files = input_dict.get("files", []) or []
|
| 70 |
|
| 71 |
if text == "" and not files:
|
| 72 |
+
# yield an error text so the streaming generator produces at least one value
|
| 73 |
+
yield "Please input a query and optionally image(s)."
|
| 74 |
return
|
| 75 |
if text == "" and files:
|
| 76 |
+
yield "Please input a text query along with the image(s)."
|
| 77 |
return
|
| 78 |
|
| 79 |
# Build the content list: images (as URLs or data URLs) followed by the text
|
|
|
|
| 102 |
messages = [{"role": "user", "content": content_list}]
|
| 103 |
|
| 104 |
if hf_token is None or not getattr(hf_token, "token", None):
|
| 105 |
+
yield "Please login with a Hugging Face account (use the Login button in the sidebar)."
|
|
|
|
|
|
|
| 106 |
return
|
| 107 |
|
| 108 |
+
try:
|
| 109 |
+
client = InferenceClient(token=hf_token.token, model=model_name)
|
| 110 |
|
| 111 |
+
response = ""
|
| 112 |
+
yield progress_bar_html("Processing...")
|
| 113 |
|
| 114 |
+
# The API may stream tokens. Try to iterate the streaming generator and extract token deltas.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
try:
|
| 116 |
+
stream = client.chat.completions.create(messages=messages, stream=True)
|
| 117 |
+
except TypeError:
|
| 118 |
+
# older/newer client variants: try the alternative method name
|
| 119 |
+
stream = client.chat_completion(messages=messages, stream=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
for chunk in stream:
|
| 122 |
+
# chunk can be an object with attributes or a dict depending on client version
|
| 123 |
+
token = ""
|
| 124 |
+
try:
|
| 125 |
+
# attempt dict-style
|
| 126 |
+
if isinstance(chunk, dict):
|
| 127 |
+
choices = chunk.get("choices")
|
| 128 |
+
if choices and len(choices) > 0:
|
| 129 |
+
delta = choices[0].get("delta", {})
|
| 130 |
+
token = delta.get("content") or ""
|
| 131 |
+
else:
|
| 132 |
+
# attribute-style
|
| 133 |
+
choices = getattr(chunk, "choices", None)
|
| 134 |
+
if choices and len(choices) > 0:
|
| 135 |
+
delta = getattr(choices[0], "delta", None)
|
| 136 |
+
if isinstance(delta, dict):
|
| 137 |
+
token = delta.get("content") or ""
|
| 138 |
+
else:
|
| 139 |
+
token = getattr(delta, "content", "")
|
| 140 |
+
except Exception:
|
| 141 |
+
token = ""
|
| 142 |
+
|
| 143 |
+
if token:
|
| 144 |
+
# escape incremental token to avoid raw HTML breaking the chat box
|
| 145 |
+
response += html.escape(token)
|
| 146 |
+
time.sleep(0.001)
|
| 147 |
+
yield response
|
| 148 |
+
|
| 149 |
+
# ensure we yield at least one final message so the async iterator doesn't see StopIteration
|
| 150 |
+
if response:
|
| 151 |
yield response
|
| 152 |
+
else:
|
| 153 |
+
yield "(no text was returned by the model)"
|
| 154 |
+
except Exception as e:
|
| 155 |
+
# don't let exceptions escape the generator; yield them so Gradio can display them
|
| 156 |
+
yield f"Error during inference: {e}"
|
| 157 |
|
| 158 |
|
| 159 |
examples = [
|
|
|
|
| 189 |
additional_inputs=[login_btn],
|
| 190 |
)
|
| 191 |
|
| 192 |
+
# ChatInterface is already created inside the Blocks context; calling render() can duplicate it
|
| 193 |
+
# so we avoid calling chatbot.render() here.
|
| 194 |
|
| 195 |
|
| 196 |
if __name__ == "__main__":
|