Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| ein notation: | |
| b - batch | |
| n - sequence | |
| nt - text sequence | |
| nw - raw wave length | |
| d - dimension | |
| """ | |
| from __future__ import annotations | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from x_transformers.x_transformers import RotaryEmbedding | |
| from f5_tts.model.modules import (AdaLayerNormZero_Final, ConvNeXtV2Block, | |
| ConvPositionEmbedding, DiTBlock, | |
| TimestepEmbedding, get_pos_embed_indices, | |
| precompute_freqs_cis) | |
| # Text embedding | |
| class TextEmbedding(nn.Module): | |
| def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2): | |
| super().__init__() | |
| self.text_embed = nn.Embedding( | |
| text_num_embeds + 1, text_dim | |
| ) # use 0 as filler token | |
| if conv_layers > 0: | |
| self.extra_modeling = True | |
| self.precompute_max_pos = 4096 # ~44s of 24khz audio | |
| self.register_buffer( | |
| "freqs_cis", | |
| precompute_freqs_cis(text_dim, self.precompute_max_pos), | |
| persistent=False, | |
| ) | |
| self.text_blocks = nn.Sequential( | |
| *[ | |
| ConvNeXtV2Block(text_dim, text_dim * conv_mult) | |
| for _ in range(conv_layers) | |
| ] | |
| ) | |
| else: | |
| self.extra_modeling = False | |
| def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722 | |
| text = ( | |
| text + 1 | |
| ) # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx() | |
| text = text[ | |
| :, :seq_len | |
| ] # curtail if character tokens are more than the mel spec tokens | |
| batch, text_len = text.shape[0], text.shape[1] | |
| text = F.pad(text, (0, seq_len - text_len), value=0) | |
| if drop_text: # cfg for text | |
| text = torch.zeros_like(text) | |
| text = self.text_embed(text) # b n -> b n d | |
| # possible extra modeling | |
| if self.extra_modeling: | |
| # sinus pos emb | |
| batch_start = torch.zeros((batch,), dtype=torch.long) | |
| pos_idx = get_pos_embed_indices( | |
| batch_start, seq_len, max_pos=self.precompute_max_pos | |
| ) | |
| text_pos_embed = self.freqs_cis[pos_idx] | |
| text = text + text_pos_embed | |
| # convnextv2 blocks | |
| text = self.text_blocks(text) | |
| return text | |
| # noised input audio and context mixing embedding | |
| class InputEmbedding(nn.Module): | |
| def __init__(self, mel_dim, text_dim, out_dim): | |
| super().__init__() | |
| self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim) | |
| self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim) | |
| def forward( | |
| self, | |
| x: float["b n d"], | |
| cond: float["b n d"], | |
| text_embed: float["b n d"], | |
| drop_audio_cond=False, | |
| ): # noqa: F722 | |
| if drop_audio_cond: # cfg for cond audio | |
| cond = torch.zeros_like(cond) | |
| x = self.proj(torch.cat((x, cond, text_embed), dim=-1)) | |
| x = self.conv_pos_embed(x) + x | |
| return x | |
| # Transformer backbone using DiT blocks | |
| class DiT(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| dim, | |
| depth=8, | |
| heads=8, | |
| dim_head=64, | |
| dropout=0.1, | |
| ff_mult=4, | |
| mel_dim=100, | |
| text_num_embeds=256, | |
| text_dim=None, | |
| conv_layers=0, | |
| long_skip_connection=False, | |
| checkpoint_activations=False, | |
| second_time=False, | |
| ): | |
| super().__init__() | |
| self.time_embed = TimestepEmbedding(dim) | |
| if second_time: | |
| self.time_embed2 = TimestepEmbedding(dim) | |
| # Zero-init the weights and biases of the first and last Linear layers in time_mlp | |
| nn.init.zeros_( | |
| self.time_embed2.time_mlp[0].weight | |
| ) # First Linear layer weights | |
| nn.init.zeros_(self.time_embed2.time_mlp[0].bias) # First Linear layer bias | |
| nn.init.zeros_( | |
| self.time_embed2.time_mlp[-1].weight | |
| ) # Last Linear layer weights | |
| nn.init.zeros_(self.time_embed2.time_mlp[-1].bias) # Last Linear layer bias | |
| else: | |
| self.time_embed2 = None | |
| if text_dim is None: | |
| text_dim = mel_dim | |
| self.vocab_size = text_num_embeds | |
| self.text_embed = TextEmbedding( | |
| text_num_embeds, text_dim, conv_layers=conv_layers | |
| ) | |
| self.input_embed = InputEmbedding(mel_dim, text_dim, dim) | |
| self.rotary_embed = RotaryEmbedding(dim_head) | |
| self.dim = dim | |
| self.depth = depth | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| DiTBlock( | |
| dim=dim, | |
| heads=heads, | |
| dim_head=dim_head, | |
| ff_mult=ff_mult, | |
| dropout=dropout, | |
| ) | |
| for _ in range(depth) | |
| ] | |
| ) | |
| self.long_skip_connection = ( | |
| nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None | |
| ) | |
| self.norm_out = AdaLayerNormZero_Final(dim) # final modulation | |
| self.proj_out = nn.Linear(dim, mel_dim) | |
| self.checkpoint_activations = checkpoint_activations | |
| def ckpt_wrapper(self, module): | |
| # https://github.com/chuanyangjin/fast-DiT/blob/main/models.py | |
| def ckpt_forward(*inputs): | |
| outputs = module(*inputs) | |
| return outputs | |
| return ckpt_forward | |
| def forward( | |
| self, | |
| x: float["b n d"], # nosied input audio # noqa: F722 | |
| cond: float["b n d"], # masked cond audio # noqa: F722 | |
| text: int["b nt"], # text # noqa: F722 | |
| time: float["b"] | float[""], # time step # noqa: F821 F722 | |
| drop_audio_cond, # cfg for cond audio | |
| drop_text, # cfg for text | |
| mask: bool["b n"] | None = None, # noqa: F722 | |
| second_time: float["b"] | float[""] = None, # noqa: F821 F722 | |
| classify_mode: bool = False, # noqa: F821 | |
| ): | |
| batch, seq_len = x.shape[0], x.shape[1] | |
| if time.ndim == 0: | |
| time = time.repeat(batch) | |
| # t: conditioning time, c: context (text + masked cond audio), x: noised input audio | |
| t = self.time_embed(time) | |
| if second_time is not None and self.time_embed2 is not None: | |
| t2 = self.time_embed2(second_time) | |
| t = t + t2 | |
| text_embed = self.text_embed(text, seq_len, drop_text=drop_text) | |
| x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond) | |
| rope = self.rotary_embed.forward_from_seq_len(seq_len) | |
| if self.long_skip_connection is not None: | |
| residual = x | |
| if classify_mode: | |
| layers = [x] | |
| for block in self.transformer_blocks: | |
| if self.checkpoint_activations: | |
| x = torch.utils.checkpoint.checkpoint( | |
| self.ckpt_wrapper(block), x, t, mask, rope | |
| ) | |
| else: | |
| x = block(x, t, mask=mask, rope=rope) | |
| if classify_mode: | |
| layers.append(x) | |
| if self.long_skip_connection is not None: | |
| x = self.long_skip_connection(torch.cat((x, residual), dim=-1)) | |
| x = self.norm_out(x, t) | |
| output = self.proj_out(x) | |
| if classify_mode: | |
| return layers | |
| return output | |