Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| ein notation: | |
| b - batch | |
| n - sequence | |
| nt - text sequence | |
| nw - raw wave length | |
| d - dimension | |
| """ | |
| from __future__ import annotations | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from x_transformers.x_transformers import RotaryEmbedding | |
| from f5_tts.model.modules import (AdaLayerNormZero_Final, | |
| ConvPositionEmbedding, DiTBlock, MMDiTBlock, | |
| TimestepEmbedding, get_pos_embed_indices, | |
| precompute_freqs_cis) | |
| from f5_tts.model.utils import (default, exists, lens_to_mask, list_str_to_idx, | |
| list_str_to_tensor, mask_from_frac_lengths) | |
| # text embedding | |
| class TextEmbedding(nn.Module): | |
| def __init__(self, out_dim, text_num_embeds): | |
| super().__init__() | |
| self.text_embed = nn.Embedding( | |
| text_num_embeds + 1, out_dim | |
| ) # will use 0 as filler token | |
| self.precompute_max_pos = 1024 | |
| self.register_buffer( | |
| "freqs_cis", | |
| precompute_freqs_cis(out_dim, self.precompute_max_pos), | |
| persistent=False, | |
| ) | |
| def forward( | |
| self, text: int["b nt"], drop_text=False | |
| ) -> int["b nt d"]: # noqa: F722 | |
| text = text + 1 | |
| if drop_text: | |
| text = torch.zeros_like(text) | |
| text = self.text_embed(text) | |
| # sinus pos emb | |
| batch_start = torch.zeros((text.shape[0],), dtype=torch.long) | |
| batch_text_len = text.shape[1] | |
| pos_idx = get_pos_embed_indices( | |
| batch_start, batch_text_len, max_pos=self.precompute_max_pos | |
| ) | |
| text_pos_embed = self.freqs_cis[pos_idx] | |
| text = text + text_pos_embed | |
| return text | |
| # noised input & masked cond audio embedding | |
| class AudioEmbedding(nn.Module): | |
| def __init__(self, in_dim, out_dim): | |
| super().__init__() | |
| self.linear = nn.Linear(2 * in_dim, out_dim) | |
| self.conv_pos_embed = ConvPositionEmbedding(out_dim) | |
| def forward( | |
| self, x: float["b n d"], cond: float["b n d"], drop_audio_cond=False | |
| ): # noqa: F722 | |
| if drop_audio_cond: | |
| cond = torch.zeros_like(cond) | |
| x = torch.cat((x, cond), dim=-1) | |
| x = self.linear(x) | |
| x = self.conv_pos_embed(x) + x | |
| return x | |
| # Transformer backbone using MM-DiT blocks | |
| class MMDiT(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| dim, | |
| text_depth=4, | |
| depth=8, | |
| heads=8, | |
| dim_head=64, | |
| dropout=0.1, | |
| ff_mult=4, | |
| text_num_embeds=256, | |
| mel_dim=100, | |
| checkpoint_activations=False, | |
| text_encoder=True, | |
| ): | |
| super().__init__() | |
| self.time_embed = TimestepEmbedding(dim) | |
| if text_encoder: | |
| self.text_encoder = TextEncoder( | |
| text_num_embeds=text_num_embeds, | |
| text_dim=dim, | |
| depth=text_depth, | |
| heads=heads, | |
| dim_head=dim_head, | |
| ff_mult=ff_mult, | |
| dropout=dropout, | |
| ) | |
| else: | |
| self.text_encoder = None | |
| self.text_embed = TextEmbedding(dim, text_num_embeds) | |
| self.audio_embed = AudioEmbedding(mel_dim, dim) | |
| self.rotary_embed = RotaryEmbedding(dim_head) | |
| self.dim = dim | |
| self.depth = depth | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| MMDiTBlock( | |
| dim=dim, | |
| heads=heads, | |
| dim_head=dim_head, | |
| dropout=dropout, | |
| ff_mult=ff_mult, | |
| context_pre_only=i == depth - 1, | |
| ) | |
| for i in range(depth) | |
| ] | |
| ) | |
| self.norm_out = AdaLayerNormZero_Final(dim) # final modulation | |
| self.proj_out = nn.Linear(dim, mel_dim) | |
| self.checkpoint_activations = checkpoint_activations | |
| def forward( | |
| self, | |
| x: float["b n d"], # nosied input audio # noqa: F722 | |
| cond: float["b n d"], # masked cond audio # noqa: F722 | |
| text: int["b nt"], # text # noqa: F722 | |
| time: float["b"] | float[""], # time step # noqa: F821 F722 | |
| drop_audio_cond, # cfg for cond audio | |
| drop_text, # cfg for text | |
| mask: bool["b n"] | None = None, # noqa: F722 | |
| text_mask: bool["b nt"] | None = None, # noqa: F722 | |
| ): | |
| batch = x.shape[0] | |
| if time.ndim == 0: | |
| time = time.repeat(batch) | |
| # t: conditioning (time), c: context (text + masked cond audio), x: noised input audio | |
| t = self.time_embed(time) | |
| if self.text_encoder is not None: | |
| c = self.text_encoder(text, t, mask=text_mask, drop_text=drop_text) | |
| else: | |
| c = self.text_embed(text, drop_text=drop_text) | |
| x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond) | |
| seq_len = x.shape[1] | |
| text_len = text.shape[1] | |
| rope_audio = self.rotary_embed.forward_from_seq_len(seq_len) | |
| rope_text = self.rotary_embed.forward_from_seq_len(text_len) | |
| # if mask is not None: | |
| # rope_audio = self.rotary_embed.forward_from_seq_len(seq_len + 1) | |
| # dummy_token = torch.zeros((x.shape[0], 1, x.shape[-1]), device=x.device, dtype=x.dtype) | |
| # x = torch.cat([x, dummy_token], dim=1) # shape is now [b, nw+1, d] | |
| # # pad the mask so that new dummy token is always masked out | |
| # # mask: [b, nw] -> [b, nw+1] | |
| # false_col = torch.zeros((x.shape[0], 1), dtype=torch.bool, device=x.device) | |
| # mask = torch.cat([mask, false_col], dim=1) | |
| # if text_mask is not None: | |
| # rope_text = self.rotary_embed.forward_from_seq_len(text_len + 1) | |
| # dummy_token = torch.zeros((c.shape[0], 1, c.shape[-1]), device=c.device, dtype=c.dtype) | |
| # c = torch.cat([c, dummy_token], dim=1) # shape is now [b, nt+1, d] | |
| # # pad the text mask so that new dummy token is always masked out | |
| # # text_mask: [b, nt] -> [b, nt+1] | |
| # false_col = torch.zeros((c.shape[0], 1), dtype=torch.bool, device=c.device) | |
| # text_mask = torch.cat([text_mask, false_col], dim=1) | |
| for block in self.transformer_blocks: | |
| c, x = block( | |
| x, | |
| c, | |
| t, | |
| mask=mask, | |
| src_mask=text_mask, | |
| rope=rope_audio, | |
| c_rope=rope_text, | |
| ) | |
| x = self.norm_out(x, t) | |
| output = self.proj_out(x) | |
| return output | |
| class TextEncoder(nn.Module): | |
| def __init__( | |
| self, | |
| text_num_embeds: int, | |
| text_dim: int = 512, | |
| depth: int = 4, | |
| heads: int = 8, | |
| dim_head: int = 64, | |
| ff_mult: int = 4, | |
| dropout: float = 0.1, | |
| ): | |
| """ | |
| A simple text encoder: an embedding layer + multiple DiTBlocks or any other | |
| transformer blocks for text-only self-attention. | |
| """ | |
| super().__init__() | |
| # Embeddings | |
| self.text_embed = TextEmbedding(text_dim, text_num_embeds) | |
| self.rotary_embed = RotaryEmbedding(dim_head) | |
| # Example stack of DiTBlocks or any custom blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| DiTBlock( | |
| dim=text_dim, | |
| heads=heads, | |
| dim_head=dim_head, | |
| ff_mult=ff_mult, | |
| dropout=dropout, | |
| ) | |
| for _ in range(depth) | |
| ] | |
| ) | |
| def forward( | |
| self, | |
| text: int["b nt"], # noqa: F821 | |
| time: float["b"] | float[""], # time step # noqa: F821 F722 | |
| mask: bool["b nt"] | None = None, # noqa: F821 F722 | |
| drop_text: bool = False, | |
| ): | |
| """ | |
| Encode text into hidden states of shape [b, nt, d]. | |
| """ | |
| batch, seq_len, device = text.shape[0], text.shape[1], text.device | |
| if drop_text: | |
| text = torch.zeros_like(text) | |
| # Basic embedding | |
| hidden_states = self.text_embed(text, seq_len) # [b, nt, d] | |
| # lens and mask | |
| rope = self.rotary_embed.forward_from_seq_len(seq_len) | |
| # Pass through self-attention blocks | |
| for block in self.transformer_blocks: | |
| # Here, you likely want standard self-attn, so no cross-attn | |
| hidden_states = block( | |
| x=hidden_states, | |
| t=time, # no time embedding for the text encoder by default | |
| mask=mask, # or pass a text mask if needed | |
| rope=rope, # pass a rope if you want rotary embeddings for text | |
| ) | |
| return hidden_states | |
| if __name__ == "__main__": | |
| from f5_tts.model.utils import get_tokenizer | |
| bsz = 16 | |
| tokenizer = "pinyin" # 'pinyin', 'char', or 'custom' | |
| tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt) | |
| dataset_name = "Emilia_ZH_EN" | |
| if tokenizer == "custom": | |
| tokenizer_path = tokenizer_path | |
| else: | |
| tokenizer_path = dataset_name | |
| vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) | |
| text = ["hello world"] * bsz | |
| text_lens = torch.ones((bsz,), dtype=torch.long) * len("hello world") | |
| text_lens[-1] = 5 | |
| device = "cuda" | |
| batch = bsz | |
| time_embed = TimestepEmbedding(512).to(device) | |
| # handle text as string | |
| if isinstance(text, list): | |
| if exists(vocab_char_map): | |
| text = list_str_to_idx(text, vocab_char_map).to(device) | |
| else: | |
| text = list_str_to_tensor(text).to(device) | |
| assert text.shape[0] == batch | |
| time = torch.rand((batch,), device=device) | |
| text_mask = lens_to_mask(text_lens).to(device) | |
| # # test text encoder | |
| # text_encoder = TextEncoder( | |
| # text_num_embeds=vocab_size, | |
| # text_dim=512, | |
| # depth=4, | |
| # heads=8, | |
| # dim_head=64, | |
| # ff_mult=4, | |
| # dropout=0.1 | |
| # ).to('cuda') | |
| # hidden_states = text_encoder(text, time_embed(time), mask) | |
| # print(hidden_states.shape) # [bsz, seq_len, text_dim] | |
| # test MMDiT | |
| mel_dim = 80 | |
| model = MMDiT( | |
| dim=512, | |
| text_depth=4, | |
| depth=8, | |
| heads=8, | |
| dim_head=64, | |
| dropout=0.1, | |
| ff_mult=4, | |
| text_num_embeds=vocab_size, | |
| mel_dim=mel_dim, | |
| ).to(device) | |
| x = torch.rand((batch, 100, mel_dim), device=device) | |
| cond = torch.rand((batch, 100, mel_dim), device=device) | |
| lens = torch.ones((batch,), dtype=torch.long) * 100 | |
| mask = lens_to_mask(lens).to(device) | |
| output = model( | |
| x, | |
| cond, | |
| text, | |
| time, | |
| drop_audio_cond=False, | |
| drop_text=False, | |
| mask=mask, | |
| text_mask=text_mask, | |
| ) | |
| print(output.shape) # [bsz, seq_len, mel_dim] | |