Spaces:
Running
on
Zero
Running
on
Zero
| # put in src/f5_tts/train/datasets/prepare_emilia_v2.py | |
| # prepares Emilia dataset with the new format w/ Emilia-YODAS | |
| import json | |
| import os | |
| from concurrent.futures import ProcessPoolExecutor | |
| from importlib.resources import files | |
| from pathlib import Path | |
| from datasets.arrow_writer import ArrowWriter | |
| from tqdm import tqdm | |
| from f5_tts.model.utils import repetition_found | |
| # Define filters for exclusion | |
| out_en = set() | |
| en_filters = ["ا", "い", "て"] | |
| def process_audio_directory(audio_dir): | |
| sub_result, durations, vocab_set = [], [], set() | |
| bad_case_en = 0 | |
| for file in audio_dir.iterdir(): | |
| if file.suffix == ".json": | |
| with open(file, "r") as f: | |
| obj = json.load(f) | |
| text = obj["text"] | |
| if any(f in text for f in en_filters) or repetition_found( | |
| text, length=4 | |
| ): | |
| bad_case_en += 1 | |
| continue | |
| duration = obj["duration"] | |
| audio_file = file.with_suffix(".mp3") | |
| if audio_file.exists(): | |
| sub_result.append( | |
| { | |
| "audio_path": str(audio_file), | |
| "text": text, | |
| "duration": duration, | |
| } | |
| ) | |
| durations.append(duration) | |
| vocab_set.update(list(text)) | |
| return sub_result, durations, vocab_set, bad_case_en | |
| def main(): | |
| assert tokenizer in ["pinyin", "char"] | |
| result, duration_list, text_vocab_set = [], [], set() | |
| total_bad_case_en = 0 | |
| executor = ProcessPoolExecutor(max_workers=max_workers) | |
| futures = [] | |
| dataset_path = Path(dataset_dir) | |
| for sub_dir in dataset_path.iterdir(): | |
| if sub_dir.is_dir(): | |
| futures.append(executor.submit(process_audio_directory, sub_dir)) | |
| for future in tqdm(futures, total=len(futures)): | |
| sub_result, durations, vocab_set, bad_case_en = future.result() | |
| result.extend(sub_result) | |
| duration_list.extend(durations) | |
| text_vocab_set.update(vocab_set) | |
| total_bad_case_en += bad_case_en | |
| executor.shutdown() | |
| if not os.path.exists(f"{save_dir}"): | |
| os.makedirs(f"{save_dir}") | |
| with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer: | |
| for line in tqdm(result, desc="Writing to raw.arrow ..."): | |
| writer.write(line) | |
| with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f: | |
| json.dump({"duration": duration_list}, f, ensure_ascii=False) | |
| with open(f"{save_dir}/vocab.txt", "w") as f: | |
| for vocab in sorted(text_vocab_set): | |
| f.write(vocab + "\n") | |
| print(f"For {dataset_name}, sample count: {len(result)}") | |
| print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}") | |
| print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours") | |
| print(f"Bad en transcription case: {total_bad_case_en}\n") | |
| if __name__ == "__main__": | |
| max_workers = 32 | |
| tokenizer = "char" | |
| dataset_dir = "/home/ubuntu/emilia-dataset/Emilia-YODAS/EN" | |
| dataset_name = f"Emilia_EN_{tokenizer}" | |
| # save_dir = os.path.expanduser(f"~/F5-TTS/data/{dataset_name}") | |
| save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}" | |
| print(f"Prepare for {dataset_name}, will save to {save_dir}\n") | |
| main() | |