|
|
import gradio as gr |
|
|
import numpy as np |
|
|
import random |
|
|
import torch |
|
|
import spaces |
|
|
import os |
|
|
import json |
|
|
|
|
|
from PIL import Image |
|
|
from diffusers import QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler |
|
|
|
|
|
from huggingface_hub import InferenceClient |
|
|
import math |
|
|
|
|
|
from optimization import optimize_pipeline_ |
|
|
from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline as QwenImageEditPipelineCustom |
|
|
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel |
|
|
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 |
|
|
|
|
|
|
|
|
def polish_prompt_hf(original_prompt, system_prompt): |
|
|
""" |
|
|
Rewrites the prompt using a Hugging Face InferenceClient. |
|
|
""" |
|
|
|
|
|
api_key = os.environ.get("HF_TOKEN") |
|
|
if not api_key: |
|
|
print("Warning: HF_TOKEN not set. Falling back to original prompt.") |
|
|
return original_prompt |
|
|
|
|
|
try: |
|
|
|
|
|
client = InferenceClient( |
|
|
provider="cerebras", |
|
|
api_key=api_key, |
|
|
) |
|
|
|
|
|
|
|
|
messages = [ |
|
|
{"role": "system", "content": system_prompt}, |
|
|
{"role": "user", "content": original_prompt} |
|
|
] |
|
|
|
|
|
|
|
|
completion = client.chat.completions.create( |
|
|
model="Qwen/Qwen3-235B-A22B-Instruct-2507", |
|
|
messages=messages, |
|
|
) |
|
|
|
|
|
|
|
|
result = completion.choices[0].message.content |
|
|
|
|
|
|
|
|
if '{"Rewritten"' in result: |
|
|
try: |
|
|
|
|
|
result = result.replace('```json', '').replace('```', '') |
|
|
result_json = json.loads(result) |
|
|
polished_prompt = result_json.get('Rewritten', result) |
|
|
except: |
|
|
polished_prompt = result |
|
|
else: |
|
|
polished_prompt = result |
|
|
|
|
|
polished_prompt = polished_prompt.strip().replace("\n", " ") |
|
|
return polished_prompt |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Error during API call to Hugging Face: {e}") |
|
|
|
|
|
return original_prompt |
|
|
|
|
|
|
|
|
def polish_prompt(prompt, img): |
|
|
""" |
|
|
Main function to polish prompts for image editing using HF inference. |
|
|
""" |
|
|
SYSTEM_PROMPT = ''' |
|
|
# Edit Instruction Rewriter |
|
|
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited. |
|
|
|
|
|
Please strictly follow the rewriting rules below: |
|
|
|
|
|
## 1. General Principles |
|
|
- Keep the rewritten prompt **concise**. Avoid overly long sentences and reduce unnecessary descriptive language. |
|
|
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary. |
|
|
- Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility. |
|
|
- All added objects or modifications must align with the logic and style of the edited input image's overall scene. |
|
|
|
|
|
## 2. Task Type Handling Rules |
|
|
### 1. Add, Delete, Replace Tasks |
|
|
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar. |
|
|
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example: |
|
|
> Original: "Add an animal" |
|
|
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera" |
|
|
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid. |
|
|
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X. |
|
|
|
|
|
### 2. Text Editing Tasks |
|
|
- All text content must be enclosed in English double quotes " ". Do not translate or alter the original language of the text, and do not change the capitalization. |
|
|
- **For text replacement tasks, always use the fixed template:** |
|
|
- Replace "xx" to "yy". |
|
|
- Replace the xx bounding box to "yy". |
|
|
- If the user does not specify text content, infer and add concise text based on the instruction and the input image's context. For example: |
|
|
> Original: "Add a line of text" (poster) |
|
|
> Rewritten: "Add text "LIMITED EDITION" at the top center with slight shadow" |
|
|
- Specify text position, color, and layout in a concise way. |
|
|
|
|
|
### 3. Human Editing Tasks |
|
|
- Maintain the person's core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.). |
|
|
- If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style. |
|
|
- **For expression changes, they must be natural and subtle, never exaggerated.** |
|
|
- If deletion is not specifically emphasized, the most important subject in the original image (e.g., a person, an animal) should be preserved. |
|
|
- For background change tasks, emphasize maintaining subject consistency at first. |
|
|
- Example: |
|
|
> Original: "Change the person's hat" |
|
|
> Rewritten: "Replace the man's hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged" |
|
|
|
|
|
### 4. Style Transformation or Enhancement Tasks |
|
|
- If a style is specified, describe it concisely with key visual traits. For example: |
|
|
> Original: "Disco style" |
|
|
> Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones" |
|
|
- If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely. |
|
|
- **For coloring tasks, including restoring old photos, always use the fixed template:** "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration" |
|
|
- If there are other changes, place the style description at the end. |
|
|
|
|
|
## 3. Rationality and Logic Checks |
|
|
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected. |
|
|
- Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges). |
|
|
|
|
|
# Output Format |
|
|
Return only the rewritten instruction text directly, without JSON formatting or any other wrapper. |
|
|
''' |
|
|
|
|
|
|
|
|
|
|
|
full_prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:" |
|
|
|
|
|
return polish_prompt_hf(full_prompt, SYSTEM_PROMPT) |
|
|
|
|
|
|
|
|
|
|
|
dtype = torch.bfloat16 |
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
|
|
|
scheduler_config = { |
|
|
"base_image_seq_len": 256, |
|
|
"base_shift": math.log(3), |
|
|
"invert_sigmas": False, |
|
|
"max_image_seq_len": 8192, |
|
|
"max_shift": math.log(3), |
|
|
"num_train_timesteps": 1000, |
|
|
"shift": 1.0, |
|
|
"shift_terminal": None, |
|
|
"stochastic_sampling": False, |
|
|
"time_shift_type": "exponential", |
|
|
"use_beta_sigmas": False, |
|
|
"use_dynamic_shifting": True, |
|
|
"use_exponential_sigmas": False, |
|
|
"use_karras_sigmas": False, |
|
|
} |
|
|
|
|
|
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) |
|
|
|
|
|
|
|
|
pipe = QwenImageEditPipelineCustom.from_pretrained( |
|
|
"Qwen/Qwen-Image-Edit", |
|
|
scheduler=scheduler, |
|
|
torch_dtype=dtype |
|
|
).to(device) |
|
|
|
|
|
|
|
|
try: |
|
|
pipe.load_lora_weights( |
|
|
"lightx2v/Qwen-Image-Lightning", |
|
|
weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors" |
|
|
) |
|
|
pipe.fuse_lora() |
|
|
print("Successfully loaded Lightning LoRA weights") |
|
|
except Exception as e: |
|
|
print(f"Warning: Could not load Lightning LoRA weights: {e}") |
|
|
print("Continuing with base model...") |
|
|
|
|
|
|
|
|
pipe.transformer.__class__ = QwenImageTransformer2DModel |
|
|
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) |
|
|
|
|
|
|
|
|
optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt") |
|
|
|
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
|
|
|
@spaces.GPU(duration=60) |
|
|
def infer( |
|
|
image, |
|
|
prompt, |
|
|
seed=42, |
|
|
randomize_seed=False, |
|
|
true_guidance_scale=1.0, |
|
|
num_inference_steps=8, |
|
|
rewrite_prompt=True, |
|
|
progress=gr.Progress(track_tqdm=True), |
|
|
): |
|
|
""" |
|
|
Generates an edited image using the Qwen-Image-Edit pipeline with Lightning acceleration. |
|
|
""" |
|
|
|
|
|
negative_prompt = " " |
|
|
|
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
|
|
print(f"Original prompt: '{prompt}'") |
|
|
print(f"Negative Prompt: '{negative_prompt}'") |
|
|
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}") |
|
|
|
|
|
if rewrite_prompt: |
|
|
prompt = polish_prompt(prompt, image) |
|
|
print(f"Rewritten Prompt: {prompt}") |
|
|
|
|
|
|
|
|
try: |
|
|
images = pipe( |
|
|
image, |
|
|
prompt=prompt, |
|
|
negative_prompt=negative_prompt, |
|
|
num_inference_steps=num_inference_steps, |
|
|
generator=generator, |
|
|
true_cfg_scale=true_guidance_scale, |
|
|
num_images_per_prompt=1 |
|
|
).images |
|
|
|
|
|
|
|
|
return images[0], seed |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Error during inference: {e}") |
|
|
raise e |
|
|
|
|
|
|
|
|
examples = [ |
|
|
|
|
|
|
|
|
|
|
|
] |
|
|
|
|
|
css = """ |
|
|
#col-container { |
|
|
margin: 0 auto; |
|
|
max-width: 1024px; |
|
|
} |
|
|
#logo-title { |
|
|
text-align: center; |
|
|
} |
|
|
#logo-title img { |
|
|
width: 400px; |
|
|
} |
|
|
#edit_text{margin-top: -62px !important} |
|
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
with gr.Column(elem_id="col-container"): |
|
|
gr.HTML(""" |
|
|
<div id="logo-title"> |
|
|
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;"> |
|
|
<h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 133px;">Fast, 8-steps with Lightning LoRA</h2> |
|
|
</div> |
|
|
""") |
|
|
gr.Markdown(""" |
|
|
[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. |
|
|
This demo uses the [Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) LoRA for accelerated inference. |
|
|
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers. |
|
|
""") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
input_image = gr.Image( |
|
|
label="Input Image", |
|
|
show_label=True, |
|
|
type="pil" |
|
|
) |
|
|
|
|
|
result = gr.Image( |
|
|
label="Result", |
|
|
show_label=True, |
|
|
type="pil" |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
prompt = gr.Text( |
|
|
label="Edit Instruction", |
|
|
show_label=False, |
|
|
placeholder="Describe the edit instruction (e.g., 'Replace the background with a sunset', 'Add a red hat', 'Remove the person')", |
|
|
container=False, |
|
|
) |
|
|
run_button = gr.Button("Edit!", variant="primary") |
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
seed = gr.Slider( |
|
|
label="Seed", |
|
|
minimum=0, |
|
|
maximum=MAX_SEED, |
|
|
step=1, |
|
|
value=0, |
|
|
) |
|
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
|
|
with gr.Row(): |
|
|
true_guidance_scale = gr.Slider( |
|
|
label="True guidance scale", |
|
|
minimum=1.0, |
|
|
maximum=10.0, |
|
|
step=0.1, |
|
|
value=1.0 |
|
|
) |
|
|
|
|
|
num_inference_steps = gr.Slider( |
|
|
label="Number of inference steps", |
|
|
minimum=4, |
|
|
maximum=28, |
|
|
step=1, |
|
|
value=8 |
|
|
) |
|
|
|
|
|
|
|
|
rewrite_prompt = gr.Checkbox( |
|
|
label="Enhance prompt (using HF Inference)", |
|
|
value=True |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
gr.on( |
|
|
triggers=[run_button.click, prompt.submit], |
|
|
fn=infer, |
|
|
inputs=[ |
|
|
input_image, |
|
|
prompt, |
|
|
seed, |
|
|
randomize_seed, |
|
|
true_guidance_scale, |
|
|
num_inference_steps, |
|
|
rewrite_prompt, |
|
|
|
|
|
], |
|
|
outputs=[result, seed], |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |