adding examples
Browse files- .gitattributes +1 -0
- README.md +5 -13
- app.py +77 -68
- images/Farsi_1.jpg +0 -0
- images/Farsi_2.jpg +0 -0
- images/Ruqaa_1.jpg +0 -0
- images/Ruqaa_2.jpg +0 -0
- images/Ruqaa_3.jpg +0 -0
.gitattributes
CHANGED
|
@@ -26,3 +26,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 26 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 28 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 26 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 28 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
weights.h5 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,13 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 2.9.1
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: mit
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
|
| 1 |
+
The weights of the model aren't here, download them first and put them in the same directory as `acsr.py`
|
| 2 |
+
|
| 3 |
+
```bash
|
| 4 |
+
$ wget 'https://raw.githubusercontent.com/mhmoodlan/arabic-font-classification/master/codebase/code/font_classifier/weights/FontModel_RuFaDataset_cnn_weights(4).h5' -O weights.h5
|
| 5 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,68 +1,77 @@
|
|
| 1 |
-
|
| 2 |
-
# %%
|
| 3 |
-
import gradio as gr
|
| 4 |
-
import numpy as np
|
| 5 |
-
# import random as rn
|
| 6 |
-
# import os
|
| 7 |
-
import tensorflow as tf
|
| 8 |
-
import cv2
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
#%%
|
| 14 |
-
def parse_image(image):
|
| 15 |
-
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
| 16 |
-
image = cv2.resize(image, (100, 100))
|
| 17 |
-
image = image.astype(np.float32)
|
| 18 |
-
image = image / 255.0
|
| 19 |
-
image = np.expand_dims(image, axis=0)
|
| 20 |
-
image = np.expand_dims(image, axis=-1)
|
| 21 |
-
return image
|
| 22 |
-
|
| 23 |
-
#%%
|
| 24 |
-
|
| 25 |
-
def cnn(input_shape, output_shape):
|
| 26 |
-
num_classes = output_shape[0]
|
| 27 |
-
dropout_seed = 708090
|
| 28 |
-
kernel_seed = 42
|
| 29 |
-
|
| 30 |
-
model = tf.keras.models.Sequential([
|
| 31 |
-
tf.keras.layers.Conv2D(16, 3, activation='relu', input_shape=input_shape, kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
| 32 |
-
tf.keras.layers.MaxPooling2D(),
|
| 33 |
-
tf.keras.layers.Dropout(0.1, seed=dropout_seed),
|
| 34 |
-
tf.keras.layers.Conv2D(32, 5, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
| 35 |
-
tf.keras.layers.MaxPooling2D(),
|
| 36 |
-
tf.keras.layers.Dropout(0.1, seed=dropout_seed),
|
| 37 |
-
tf.keras.layers.Conv2D(64, 10, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
| 38 |
-
tf.keras.layers.MaxPooling2D(),
|
| 39 |
-
tf.keras.layers.Dropout(0.1, seed=dropout_seed),
|
| 40 |
-
tf.keras.layers.Flatten(),
|
| 41 |
-
tf.keras.layers.Dense(128, activation='relu', kernel_regularizer='l2', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
| 42 |
-
tf.keras.layers.Dropout(0.2, seed=dropout_seed),
|
| 43 |
-
tf.keras.layers.Dense(16, activation='relu', kernel_regularizer='l2', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
| 44 |
-
tf.keras.layers.Dropout(0.2, seed=dropout_seed),
|
| 45 |
-
tf.keras.layers.Dense(num_classes, activation='sigmoid', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed))
|
| 46 |
-
])
|
| 47 |
-
|
| 48 |
-
return model
|
| 49 |
-
|
| 50 |
-
#%%
|
| 51 |
-
model = cnn((100, 100, 1), (1,))
|
| 52 |
-
model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=False), optimizer='Adam', metrics='accuracy')
|
| 53 |
-
|
| 54 |
-
model.load_weights('weights.h5')
|
| 55 |
-
|
| 56 |
-
#%%
|
| 57 |
-
def segment(image):
|
| 58 |
-
image = parse_image(image)
|
| 59 |
-
# print(image.shape)
|
| 60 |
-
output = model.predict(image)
|
| 61 |
-
# print(output)
|
| 62 |
-
labels = {
|
| 63 |
-
"farsi" : 1-float(output),
|
| 64 |
-
"ruqaa" : float(output)
|
| 65 |
-
}
|
| 66 |
-
return labels
|
| 67 |
-
|
| 68 |
-
iface = gr.Interface(fn=segment,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# %%
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
# import random as rn
|
| 6 |
+
# import os
|
| 7 |
+
import tensorflow as tf
|
| 8 |
+
import cv2
|
| 9 |
+
|
| 10 |
+
tf.config.experimental.set_visible_devices([], 'GPU')
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
#%%
|
| 14 |
+
def parse_image(image):
|
| 15 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
| 16 |
+
image = cv2.resize(image, (100, 100))
|
| 17 |
+
image = image.astype(np.float32)
|
| 18 |
+
image = image / 255.0
|
| 19 |
+
image = np.expand_dims(image, axis=0)
|
| 20 |
+
image = np.expand_dims(image, axis=-1)
|
| 21 |
+
return image
|
| 22 |
+
|
| 23 |
+
#%%
|
| 24 |
+
|
| 25 |
+
def cnn(input_shape, output_shape):
|
| 26 |
+
num_classes = output_shape[0]
|
| 27 |
+
dropout_seed = 708090
|
| 28 |
+
kernel_seed = 42
|
| 29 |
+
|
| 30 |
+
model = tf.keras.models.Sequential([
|
| 31 |
+
tf.keras.layers.Conv2D(16, 3, activation='relu', input_shape=input_shape, kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
| 32 |
+
tf.keras.layers.MaxPooling2D(),
|
| 33 |
+
tf.keras.layers.Dropout(0.1, seed=dropout_seed),
|
| 34 |
+
tf.keras.layers.Conv2D(32, 5, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
| 35 |
+
tf.keras.layers.MaxPooling2D(),
|
| 36 |
+
tf.keras.layers.Dropout(0.1, seed=dropout_seed),
|
| 37 |
+
tf.keras.layers.Conv2D(64, 10, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
| 38 |
+
tf.keras.layers.MaxPooling2D(),
|
| 39 |
+
tf.keras.layers.Dropout(0.1, seed=dropout_seed),
|
| 40 |
+
tf.keras.layers.Flatten(),
|
| 41 |
+
tf.keras.layers.Dense(128, activation='relu', kernel_regularizer='l2', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
| 42 |
+
tf.keras.layers.Dropout(0.2, seed=dropout_seed),
|
| 43 |
+
tf.keras.layers.Dense(16, activation='relu', kernel_regularizer='l2', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
| 44 |
+
tf.keras.layers.Dropout(0.2, seed=dropout_seed),
|
| 45 |
+
tf.keras.layers.Dense(num_classes, activation='sigmoid', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed))
|
| 46 |
+
])
|
| 47 |
+
|
| 48 |
+
return model
|
| 49 |
+
|
| 50 |
+
#%%
|
| 51 |
+
model = cnn((100, 100, 1), (1,))
|
| 52 |
+
model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=False), optimizer='Adam', metrics='accuracy')
|
| 53 |
+
|
| 54 |
+
model.load_weights('weights.h5')
|
| 55 |
+
|
| 56 |
+
#%%
|
| 57 |
+
def segment(image):
|
| 58 |
+
image = parse_image(image)
|
| 59 |
+
# print(image.shape)
|
| 60 |
+
output = model.predict(image)
|
| 61 |
+
# print(output)
|
| 62 |
+
labels = {
|
| 63 |
+
"farsi" : 1-float(output),
|
| 64 |
+
"ruqaa" : float(output)
|
| 65 |
+
}
|
| 66 |
+
return labels
|
| 67 |
+
|
| 68 |
+
iface = gr.Interface(fn=segment,
|
| 69 |
+
inputs="image",
|
| 70 |
+
outputs="label",
|
| 71 |
+
examples=[["images/Farsi_1.jpg"],
|
| 72 |
+
["images/Farsi_2.jpg"],
|
| 73 |
+
["images/Ruqaa_1.jpg"],
|
| 74 |
+
["images/Ruqaa_2.jpg"],
|
| 75 |
+
["images/Ruqaa_3.jpg"],
|
| 76 |
+
]).launch()
|
| 77 |
+
# %%
|
images/Farsi_1.jpg
ADDED
|
images/Farsi_2.jpg
ADDED
|
images/Ruqaa_1.jpg
ADDED
|
images/Ruqaa_2.jpg
ADDED
|
images/Ruqaa_3.jpg
ADDED
|