# Trackio Deployment Guide for Hugging Face Spaces This guide provides step-by-step instructions for deploying Trackio experiment tracking to Hugging Face Spaces and integrating it with your SmolLM3 fine-tuning pipeline. ## Prerequisites - Hugging Face account - Hugging Face CLI installed (`pip install huggingface_hub`) - Git configured with your Hugging Face credentials ## Method 1: Automated Deployment (Recommended) ### Step 1: Run the Deployment Script ```bash python deploy_trackio_space.py ``` The script will prompt you for: - Your Hugging Face username - Space name (e.g., `trackio-monitoring`) - Hugging Face token (needs a write token obviously) ### Step 2: Wait for Build After deployment, wait 2-5 minutes for the Space to build and become available. ### Step 3: Test the Interface Visit your Space URL to test the interface: ``` https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME ``` ## Method 2: Manual Deployment ### Step 1: Create a New Space 1. Go to https://huggingface.co/spaces 2. Click "Create new Space" 3. Configure the Space: - **Owner**: Your username - **Space name**: `trackio-monitoring` (or your preferred name) - **SDK**: Gradio - **Hardware**: CPU (Basic) - **License**: MIT ### Step 2: Upload Files Upload these files to your Space: #### `app.py` The main Gradio interface (already created in this repository) #### `requirements_space.txt` ``` gradio>=4.0.0 gradio-client>=0.10.0 requests>=2.31.0 numpy>=1.24.0 pandas>=2.0.0 jsonschema>=4.17.0 plotly>=5.15.0 matplotlib>=3.7.0 python-dotenv>=1.0.0 ``` #### `README.md` ```markdown # Trackio Experiment Tracking A Gradio interface for experiment tracking and monitoring. ## Features - Create and manage experiments - Log training metrics and parameters - View experiment details and results - Update experiment status ## Usage 1. Create a new experiment using the "Create Experiment" tab 2. Log metrics during training using the "Log Metrics" tab 3. View experiment details using the "View Experiments" tab 4. Update experiment status using the "Update Status" tab ## Integration To connect your training script to this Trackio Space: ```python from monitoring import SmolLM3Monitor monitor = SmolLM3Monitor( experiment_name="my_experiment", trackio_url="https://your-space.hf.space", enable_tracking=True ) ``` ### Step 3: Configure Space Settings In your Space settings, ensure: - **App file**: `app.py` - **Python version**: 3.9 or higher - **Hardware**: CPU (Basic) is sufficient ## Integration with Your Training Script ### Step 1: Update Your Configuration Add Trackio settings to your training configuration: ```python # config/train_smollm3.py @dataclass class SmolLM3Config: # ... existing settings ... # Trackio monitoring configuration enable_tracking: bool = True trackio_url: Optional[str] = None # Your Space URL trackio_token: Optional[str] = None log_artifacts: bool = True log_metrics: bool = True log_config: bool = True experiment_name: Optional[str] = None ``` ### Step 2: Run Training with Trackio ```bash python train.py config/train_smollm3.py \ --dataset_dir my_dataset \ --enable_tracking \ --trackio_url "https://your-username-trackio-monitoring.hf.space" \ --experiment_name "smollm3_finetune_v1" ``` ### Step 3: Monitor Your Experiments 1. **Create Experiment**: Use the "Create Experiment" tab in your Space 2. **Log Metrics**: Your training script will automatically log metrics 3. **View Results**: Use the "View Experiments" tab to see progress 4. **Update Status**: Mark experiments as completed when done ## Advanced Configuration ### Environment Variables You can set Trackio configuration via environment variables: ```bash export TRACKIO_URL="https://your-space.hf.space" export TRACKIO_TOKEN="your_token_here" ``` ### Custom Experiment Names ```bash python train.py config/train_smollm3.py \ --experiment_name "smollm3_high_lr_experiment" \ --trackio_url "https://your-space.hf.space" ``` ### Multiple Experiments You can run multiple experiments and track them separately: ```bash # Experiment 1 python train.py config/train_smollm3.py \ --experiment_name "smollm3_baseline" \ --learning_rate 2e-5 # Experiment 2 python train.py config/train_smollm3.py \ --experiment_name "smollm3_high_lr" \ --learning_rate 5e-5 ``` ## Using the Trackio Interface ### Creating Experiments 1. Go to the "Create Experiment" tab 2. Enter experiment name (e.g., "smollm3_finetune_v1") 3. Add description (optional) 4. Click "Create Experiment" 5. Note the experiment ID for logging metrics ### Logging Metrics 1. Go to the "Log Metrics" tab 2. Enter your experiment ID 3. Add metrics in JSON format: ```json { "loss": 0.5, "accuracy": 0.85, "learning_rate": 2e-5 } ``` 4. Add step number (optional) 5. Click "Log Metrics" ### Viewing Experiments 1. Go to the "View Experiments" tab 2. Enter experiment ID to view specific experiment 3. Or click "List All Experiments" to see all experiments ### Updating Status 1. Go to the "Update Status" tab 2. Enter experiment ID 3. Select new status (running, completed, failed, paused) 4. Click "Update Status" ## Troubleshooting ### Common Issues #### 1. Space Not Building - Check that all required files are uploaded - Verify `app.py` is the main file - Check the Space logs for errors #### 2. Connection Errors - Verify your Space URL is correct - Check that the Space is running (not paused) - Ensure your training script can reach the Space URL #### 3. Missing Metrics - Check that `enable_tracking=True` in your config - Verify the Trackio URL is correct - Check training logs for monitoring errors #### 4. Authentication Issues - If using tokens, verify they're correct - Check Hugging Face account permissions - Ensure Space is public or you have access ### Debug Mode Enable debug logging in your training script: ```python import logging logging.basicConfig(level=logging.DEBUG) ``` ### Manual Testing Test the Trackio interface manually: 1. Create an experiment 2. Log some test metrics 3. View the experiment details 4. Update the status ## Security Considerations ### Public vs Private Spaces - **Public Spaces**: Anyone can view and use the interface - **Private Spaces**: Only you and collaborators can access ### Token Management - Store tokens securely (environment variables) - Don't commit tokens to version control - Use Hugging Face's token management ### Data Privacy - Trackio stores experiment data in the Space - Consider data retention policies - Be mindful of sensitive information in experiment names ## Performance Optimization ### Space Configuration - Use CPU (Basic) for the interface (sufficient for tracking) - Consider GPU only for actual training - Monitor Space usage and limits ### Efficient Logging - Log metrics at reasonable intervals (every 10-100 steps) - Avoid logging too frequently to prevent rate limiting - Use batch logging when possible ## Monitoring Best Practices ### Experiment Naming Use descriptive names: - `smollm3_baseline_v1` - `smollm3_high_lr_experiment` - `smollm3_dpo_training` ### Metric Logging Log relevant metrics: - Training loss - Validation loss - Learning rate - GPU memory usage - Training time ### Status Management - Mark experiments as "running" when starting - Update to "completed" when finished - Mark as "failed" if errors occur - Use "paused" for temporary stops ## Integration Examples ### Basic Integration ```python from monitoring import SmolLM3Monitor # Initialize monitor monitor = SmolLM3Monitor( experiment_name="my_experiment", trackio_url="https://your-space.hf.space", enable_tracking=True ) # Log configuration monitor.log_config(config_dict) # Log metrics during training monitor.log_metrics({"loss": 0.5}, step=100) # Log final results monitor.log_training_summary(final_results) ``` ### Advanced Integration ```python # Custom monitoring setup monitor = SmolLM3Monitor( experiment_name="smollm3_advanced", trackio_url="https://your-space.hf.space", enable_tracking=True, log_artifacts=True, log_metrics=True, log_config=True ) # Log system metrics monitor.log_system_metrics(step=current_step) # Log model checkpoint monitor.log_model_checkpoint("checkpoint-1000", step=1000) # Log evaluation results monitor.log_evaluation_results(eval_results, step=1000) ``` ## Support and Resources ### Documentation - [Hugging Face Spaces Documentation](https://huggingface.co/docs/hub/spaces) - [Gradio Documentation](https://gradio.app/docs/) - [Trackio GitHub Repository](https://github.com/Josephrp/trackio) ### Community - [Hugging Face Forums](https://discuss.huggingface.co/) - [Gradio Discord](https://discord.gg/feTf9z3Z) ### Issues and Feedback - Report issues on the project repository - Provide feedback on the Trackio interface - Suggest improvements for the monitoring system ## Conclusion You now have a complete Trackio monitoring system deployed on Hugging Face Spaces! This setup provides: - ✅ Easy experiment tracking and monitoring - ✅ Real-time metric logging - ✅ Web-based interface for experiment management - ✅ Integration with your SmolLM3 fine-tuning pipeline - ✅ Scalable and accessible monitoring solution Start tracking your experiments and gain insights into your model training process!