|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" SQuAD v2 metric. """ |
|
|
|
|
|
import datasets |
|
|
|
|
|
import evaluate |
|
|
|
|
|
from .compute_score import ( |
|
|
apply_no_ans_threshold, |
|
|
find_all_best_thresh, |
|
|
get_raw_scores, |
|
|
make_eval_dict, |
|
|
make_qid_to_has_ans, |
|
|
merge_eval, |
|
|
) |
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
|
@inproceedings{Rajpurkar2016SQuAD10, |
|
|
title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, |
|
|
author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, |
|
|
booktitle={EMNLP}, |
|
|
year={2016} |
|
|
} |
|
|
""" |
|
|
|
|
|
_DESCRIPTION = """ |
|
|
This metric wrap the official scoring script for version 2 of the Stanford Question |
|
|
Answering Dataset (SQuAD). |
|
|
|
|
|
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by |
|
|
crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, |
|
|
from the corresponding reading passage, or the question might be unanswerable. |
|
|
|
|
|
SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions |
|
|
written adversarially by crowdworkers to look similar to answerable ones. |
|
|
To do well on SQuAD2.0, systems must not only answer questions when possible, but also |
|
|
determine when no answer is supported by the paragraph and abstain from answering. |
|
|
""" |
|
|
|
|
|
_KWARGS_DESCRIPTION = """ |
|
|
Computes SQuAD v2 scores (F1 and EM). |
|
|
Args: |
|
|
predictions: List of triple for question-answers to score with the following elements: |
|
|
- the question-answer 'id' field as given in the references (see below) |
|
|
- the text of the answer |
|
|
- the probability that the question has no answer |
|
|
references: List of question-answers dictionaries with the following key-values: |
|
|
- 'id': id of the question-answer pair (see above), |
|
|
- 'answers': a list of Dict {'text': text of the answer as a string} |
|
|
no_answer_threshold: float |
|
|
Probability threshold to decide that a question has no answer. |
|
|
Returns: |
|
|
'exact': Exact match (the normalized answer exactly match the gold answer) |
|
|
'f1': The F-score of predicted tokens versus the gold answer |
|
|
'total': Number of score considered |
|
|
'HasAns_exact': Exact match (the normalized answer exactly match the gold answer) |
|
|
'HasAns_f1': The F-score of predicted tokens versus the gold answer |
|
|
'HasAns_total': Number of score considered |
|
|
'NoAns_exact': Exact match (the normalized answer exactly match the gold answer) |
|
|
'NoAns_f1': The F-score of predicted tokens versus the gold answer |
|
|
'NoAns_total': Number of score considered |
|
|
'best_exact': Best exact match (with varying threshold) |
|
|
'best_exact_thresh': No-answer probability threshold associated to the best exact match |
|
|
'best_f1': Best F1 (with varying threshold) |
|
|
'best_f1_thresh': No-answer probability threshold associated to the best F1 |
|
|
Examples: |
|
|
|
|
|
>>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22', 'no_answer_probability': 0.}] |
|
|
>>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] |
|
|
>>> squad_v2_metric = evaluate.load("squad_v2") |
|
|
>>> results = squad_v2_metric.compute(predictions=predictions, references=references) |
|
|
>>> print(results) |
|
|
{'exact': 100.0, 'f1': 100.0, 'total': 1, 'HasAns_exact': 100.0, 'HasAns_f1': 100.0, 'HasAns_total': 1, 'best_exact': 100.0, 'best_exact_thresh': 0.0, 'best_f1': 100.0, 'best_f1_thresh': 0.0} |
|
|
""" |
|
|
|
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
|
class SquadV2(evaluate.Metric): |
|
|
def _info(self): |
|
|
return evaluate.MetricInfo( |
|
|
description=_DESCRIPTION, |
|
|
citation=_CITATION, |
|
|
inputs_description=_KWARGS_DESCRIPTION, |
|
|
features=datasets.Features( |
|
|
{ |
|
|
"predictions": { |
|
|
"id": datasets.Value("string"), |
|
|
"prediction_text": datasets.Value("string"), |
|
|
"no_answer_probability": datasets.Value("float32"), |
|
|
}, |
|
|
"references": { |
|
|
"id": datasets.Value("string"), |
|
|
"answers": datasets.features.Sequence( |
|
|
{"text": datasets.Value("string"), "answer_start": datasets.Value("int32")} |
|
|
), |
|
|
}, |
|
|
} |
|
|
), |
|
|
codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], |
|
|
reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], |
|
|
) |
|
|
|
|
|
def _compute(self, predictions, references, no_answer_threshold=1.0): |
|
|
no_answer_probabilities = {p["id"]: p["no_answer_probability"] for p in predictions} |
|
|
dataset = [{"paragraphs": [{"qas": references}]}] |
|
|
predictions = {p["id"]: p["prediction_text"] for p in predictions} |
|
|
|
|
|
qid_to_has_ans = make_qid_to_has_ans(dataset) |
|
|
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] |
|
|
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] |
|
|
|
|
|
exact_raw, f1_raw = get_raw_scores(dataset, predictions) |
|
|
exact_thresh = apply_no_ans_threshold(exact_raw, no_answer_probabilities, qid_to_has_ans, no_answer_threshold) |
|
|
f1_thresh = apply_no_ans_threshold(f1_raw, no_answer_probabilities, qid_to_has_ans, no_answer_threshold) |
|
|
out_eval = make_eval_dict(exact_thresh, f1_thresh) |
|
|
|
|
|
if has_ans_qids: |
|
|
has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids) |
|
|
merge_eval(out_eval, has_ans_eval, "HasAns") |
|
|
if no_ans_qids: |
|
|
no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids) |
|
|
merge_eval(out_eval, no_ans_eval, "NoAns") |
|
|
find_all_best_thresh(out_eval, predictions, exact_raw, f1_raw, no_answer_probabilities, qid_to_has_ans) |
|
|
return dict(out_eval) |
|
|
|