Spaces:
Running
on
Zero
Running
on
Zero
| import importlib | |
| __attributes = { | |
| 'SparseStructureEncoder': 'sparse_structure_vae', | |
| 'SparseStructureDecoder': 'sparse_structure_vae', | |
| 'SparseStructureFlowModel': 'sparse_structure_flow', | |
| 'SLatEncoder': 'structured_latent_vae', | |
| 'SLatGaussianDecoder': 'structured_latent_vae', | |
| 'SLatRadianceFieldDecoder': 'structured_latent_vae', | |
| 'SLatMeshDecoder': 'structured_latent_vae', | |
| 'ElasticSLatEncoder': 'structured_latent_vae', | |
| 'ElasticSLatGaussianDecoder': 'structured_latent_vae', | |
| 'ElasticSLatRadianceFieldDecoder': 'structured_latent_vae', | |
| 'ElasticSLatMeshDecoder': 'structured_latent_vae', | |
| 'SLatFlowModel': 'structured_latent_flow', | |
| 'ElasticSLatFlowModel': 'structured_latent_flow', | |
| } | |
| __submodules = [] | |
| __all__ = list(__attributes.keys()) + __submodules | |
| def __getattr__(name): | |
| if name not in globals(): | |
| if name in __attributes: | |
| module_name = __attributes[name] | |
| module = importlib.import_module(f".{module_name}", __name__) | |
| globals()[name] = getattr(module, name) | |
| elif name in __submodules: | |
| module = importlib.import_module(f".{name}", __name__) | |
| globals()[name] = module | |
| else: | |
| raise AttributeError(f"module {__name__} has no attribute {name}") | |
| return globals()[name] | |
| def from_pretrained(path: str, **kwargs): | |
| """ | |
| Load a model from a pretrained checkpoint. | |
| Args: | |
| path: The path to the checkpoint. Can be either local path or a Hugging Face model name. | |
| NOTE: config file and model file should take the name f'{path}.json' and f'{path}.safetensors' respectively. | |
| **kwargs: Additional arguments for the model constructor. | |
| """ | |
| import os | |
| import json | |
| from safetensors.torch import load_file | |
| is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors") | |
| # print(f"is local: {is_local}, path: {path} because {os.path.exists(f'{path}.json')} and {os.path.exists(f'{path}.safetensors')}") | |
| if is_local: | |
| config_file = f"{path}.json" | |
| model_file = f"{path}.safetensors" | |
| else: | |
| from huggingface_hub import hf_hub_download | |
| path_parts = path.split('/') | |
| repo_id = f'{path_parts[0]}/{path_parts[1]}' | |
| model_name = '/'.join(path_parts[2:]) | |
| config_file = hf_hub_download(repo_id, f"{model_name}.json") | |
| model_file = hf_hub_download(repo_id, f"{model_name}.safetensors") | |
| with open(config_file, 'r') as f: | |
| config = json.load(f) | |
| # print(f"Config loaded successfully: {config.get('name', 'Name not found in config')}") | |
| if 'name' not in config: | |
| raise ValueError(f"Config file missing required 'name' field") | |
| model_class = config['name'] | |
| if model_class.lower() in [k.lower() for k in __attributes.keys()]: | |
| # Try to find case-insensitive match | |
| for k in __attributes.keys(): | |
| if k.lower() == model_class.lower(): | |
| model_class = k | |
| break | |
| # print(f"Using model class: {model_class}") | |
| try: | |
| model_constructor = __getattr__(model_class) | |
| except AttributeError as e: | |
| print(f"Model lookup failed: {e}") | |
| raise ValueError(f"Model class '{model_class}' not found in available models: {list(__attributes.keys())}") | |
| # print(f"Initializing model with args: {config.get('args', {})}") | |
| model = model_constructor(**config.get('args', {}), **kwargs) | |
| # Load state dict | |
| state_dict = load_file(model_file) | |
| # print(f"State dict loaded successfully from {model_file}") | |
| # Check key compatibility | |
| model_keys = set(model.state_dict().keys()) | |
| loaded_keys = set(state_dict.keys()) | |
| missing_keys = model_keys - loaded_keys | |
| unexpected_keys = loaded_keys - model_keys | |
| if missing_keys: | |
| print(f"Missing keys in state dict: {missing_keys}") | |
| if unexpected_keys: | |
| print(f"Unexpected keys in state dict: {unexpected_keys}") | |
| # Load state dict with strict=False to allow missing keys | |
| model.load_state_dict(state_dict, strict=False) | |
| return model | |
| # For Pylance | |
| if __name__ == '__main__': | |
| from .sparse_structure_vae import ( | |
| SparseStructureEncoder, | |
| SparseStructureDecoder, | |
| ) | |
| from .sparse_structure_flow import SparseStructureFlowModel | |
| from .structured_latent_vae import ( | |
| SLatEncoder, | |
| SLatGaussianDecoder, | |
| SLatRadianceFieldDecoder, | |
| SLatMeshDecoder, | |
| ElasticSLatEncoder, | |
| ElasticSLatGaussianDecoder, | |
| ElasticSLatRadianceFieldDecoder, | |
| ElasticSLatMeshDecoder, | |
| ) | |
| from .structured_latent_flow import ( | |
| SLatFlowModel, | |
| ElasticSLatFlowModel, | |
| ) | |