Spaces:
Running
on
Zero
Running
on
Zero
| from typing import * | |
| from einops import rearrange | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import numpy as np | |
| from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32 | |
| from ..modules.transformer import AbsolutePositionEmbedder | |
| from ..modules.norm import LayerNorm32 | |
| from ..modules import sparse as sp | |
| from ..modules.sparse.transformer import ModulatedSparseTransformerCrossBlock | |
| from .sparse_structure_flow import TimestepEmbedder | |
| from .sparse_elastic_mixin import SparseTransformerElasticMixin | |
| class SparseResBlock3d(nn.Module): | |
| """ | |
| 3D Sparse Residual Block with time embedding conditioning. | |
| This block performs normalization, convolution operations on sparse tensors, | |
| and incorporates time embeddings via adaptive layer normalization. | |
| Supports optional up/downsampling. | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| emb_channels: int, | |
| out_channels: Optional[int] = None, | |
| downsample: bool = False, | |
| upsample: bool = False, | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.emb_channels = emb_channels | |
| self.out_channels = out_channels or channels | |
| self.downsample = downsample | |
| self.upsample = upsample | |
| assert not (downsample and upsample), "Cannot downsample and upsample at the same time" | |
| # First normalization and convolution | |
| self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6) | |
| self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6) | |
| self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3) | |
| # Second convolution initialized to zero for stable training | |
| self.conv2 = zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3)) | |
| # Time embedding projection for adaptive layer norm | |
| self.emb_layers = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(emb_channels, 2 * self.out_channels, bias=True), | |
| ) | |
| # Skip connection with linear projection if channel dimensions change | |
| self.skip_connection = sp.SparseLinear(channels, self.out_channels) if channels != self.out_channels else nn.Identity() | |
| # Optional up/downsampling | |
| self.updown = None | |
| if self.downsample: | |
| self.updown = sp.SparseDownsample(2) | |
| elif self.upsample: | |
| self.updown = sp.SparseUpsample(2) | |
| def _updown(self, x: sp.SparseTensor) -> sp.SparseTensor: | |
| """Apply up/downsampling if configured""" | |
| if self.updown is not None: | |
| x = self.updown(x) | |
| return x | |
| def forward(self, x: sp.SparseTensor, emb: torch.Tensor) -> sp.SparseTensor: | |
| """ | |
| Forward pass of the residual block. | |
| Args: | |
| x: Input sparse tensor | |
| emb: Time embedding tensor | |
| Returns: | |
| Processed sparse tensor | |
| """ | |
| # print(f"number of points in the input: {x.coords.shape[0]}") | |
| # Project embedding to scale and shift factors | |
| emb_out = self.emb_layers(emb).type(x.dtype) | |
| scale, shift = torch.chunk(emb_out, 2, dim=1) | |
| # Apply up/downsampling if needed | |
| x = self._updown(x) | |
| # Main processing path | |
| h = x.replace(self.norm1(x.feats)) | |
| h = h.replace(F.silu(h.feats)) | |
| h = self.conv1(h) | |
| # Apply adaptive layer norm using scale and shift from time embedding | |
| h = h.replace(self.norm2(h.feats)) * (1 + scale) + shift | |
| h = h.replace(F.silu(h.feats)) | |
| h = self.conv2(h) | |
| # Residual connection | |
| h = h + self.skip_connection(x) | |
| return h | |
| class SLatFlowModel(nn.Module): | |
| """ | |
| Structured Latent Flow Model for 3D generative modeling. | |
| This model combines sparse convolutions with transformer blocks and | |
| supports conditional generation. It uses a U-Net-like architecture with | |
| skip connections and has optional mixed precision support. | |
| """ | |
| def __init__( | |
| self, | |
| resolution: int, | |
| in_channels: int, | |
| model_channels: int, | |
| cond_channels: int, | |
| out_channels: int, | |
| num_blocks: int, | |
| num_heads: Optional[int] = None, | |
| num_head_channels: Optional[int] = 64, | |
| mlp_ratio: float = 4, | |
| patch_size: int = 2, | |
| num_io_res_blocks: int = 2, | |
| io_block_channels: List[int] = None, | |
| pe_mode: Literal["ape", "rope"] = "ape", | |
| use_fp16: bool = False, | |
| use_checkpoint: bool = False, | |
| use_skip_connection: bool = True, | |
| share_mod: bool = False, | |
| qk_rms_norm: bool = False, | |
| qk_rms_norm_cross: bool = False, | |
| ): | |
| super().__init__() | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| self.model_channels = model_channels | |
| self.cond_channels = cond_channels | |
| self.out_channels = out_channels | |
| self.num_blocks = num_blocks | |
| self.num_heads = num_heads or model_channels // num_head_channels | |
| self.mlp_ratio = mlp_ratio | |
| self.patch_size = patch_size | |
| self.num_io_res_blocks = num_io_res_blocks | |
| self.io_block_channels = io_block_channels | |
| self.pe_mode = pe_mode | |
| self.use_fp16 = use_fp16 | |
| self.use_checkpoint = use_checkpoint | |
| self.use_skip_connection = use_skip_connection | |
| self.share_mod = share_mod | |
| self.qk_rms_norm = qk_rms_norm | |
| self.qk_rms_norm_cross = qk_rms_norm_cross | |
| self.dtype = torch.float16 if use_fp16 else torch.float32 | |
| # Validate configurations | |
| if self.io_block_channels is not None: | |
| assert int(np.log2(patch_size)) == np.log2(patch_size), "Patch size must be a power of 2" | |
| assert np.log2(patch_size) == len(io_block_channels), "Number of IO ResBlocks must match the number of stages" | |
| # Time step embedder | |
| self.t_embedder = TimestepEmbedder(model_channels) | |
| # Shared modulation for all transformer blocks if enabled | |
| if share_mod: | |
| self.adaLN_modulation = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(model_channels, 6 * model_channels, bias=True) | |
| ) | |
| self.part_max_size = 50 | |
| # Positional embedding for transformer blocks | |
| if pe_mode == "ape": | |
| self.pos_embedder = AbsolutePositionEmbedder(model_channels) | |
| self.part_pe = nn.Embedding(self.part_max_size + 1, model_channels) # +1 for overall object | |
| self.part_pe_proj = nn.Linear(model_channels, model_channels) | |
| # Mask embedding | |
| self.dinov2_hidden_size = 1024 | |
| self.mask_group_emb_dim = 128 | |
| self.mask_group_emb = nn.Embedding(self.part_max_size + 1, self.mask_group_emb_dim) # +1 for background | |
| self.mask_group_emb_proj = nn.Linear(self.mask_group_emb_dim, self.dinov2_hidden_size) | |
| # Input projection layer | |
| self.input_layer = sp.SparseLinear(in_channels, model_channels if io_block_channels is None else io_block_channels[0]) | |
| # Input processing blocks (downsampling path) | |
| self.input_blocks = nn.ModuleList([]) | |
| # print(f"io_block_channels: {io_block_channels}") # io_block_channels: [128] | |
| # print(f"model_channels: {model_channels}") # model_channels: 1024 | |
| if io_block_channels is not None: | |
| for chs, next_chs in zip(io_block_channels, io_block_channels[1:] + [model_channels]): | |
| # Add regular residual blocks at current resolution | |
| self.input_blocks.extend([ | |
| SparseResBlock3d( | |
| chs, | |
| model_channels, | |
| out_channels=chs, | |
| ) | |
| for _ in range(num_io_res_blocks-1) | |
| ]) | |
| # Add downsampling block at the end of each resolution level | |
| self.input_blocks.append( | |
| SparseResBlock3d( | |
| chs, | |
| model_channels, | |
| out_channels=next_chs, | |
| downsample=True, | |
| ) | |
| ) | |
| # Core transformer blocks | |
| self.blocks = nn.ModuleList([ | |
| ModulatedSparseTransformerCrossBlock( | |
| model_channels, | |
| cond_channels, | |
| num_heads=self.num_heads, | |
| mlp_ratio=self.mlp_ratio, | |
| attn_mode='full', | |
| use_checkpoint=self.use_checkpoint, | |
| use_rope=(pe_mode == "rope"), | |
| share_mod=self.share_mod, | |
| qk_rms_norm=self.qk_rms_norm, | |
| qk_rms_norm_cross=self.qk_rms_norm_cross, | |
| ) | |
| for _ in range(num_blocks) | |
| ]) | |
| # Output processing blocks (upsampling path) | |
| self.out_blocks = nn.ModuleList([]) | |
| if io_block_channels is not None: | |
| for chs, prev_chs in zip(reversed(io_block_channels), [model_channels] + list(reversed(io_block_channels[1:]))): | |
| # Add upsampling block at the beginning of each resolution level | |
| self.out_blocks.append( | |
| SparseResBlock3d( | |
| prev_chs * 2 if self.use_skip_connection else prev_chs, | |
| model_channels, | |
| out_channels=chs, | |
| upsample=True, | |
| ) | |
| ) | |
| # Add regular residual blocks at current resolution | |
| self.out_blocks.extend([ | |
| SparseResBlock3d( | |
| chs * 2 if self.use_skip_connection else chs, | |
| model_channels, | |
| out_channels=chs, | |
| ) | |
| for _ in range(num_io_res_blocks-1) | |
| ]) | |
| # Final output projection | |
| self.out_layer = sp.SparseLinear(model_channels if io_block_channels is None else io_block_channels[0], out_channels) | |
| # Initialize model weights | |
| self.initialize_weights() | |
| if use_fp16: | |
| self.convert_to_fp16() | |
| # else: | |
| # self.convert_to_fp32() | |
| def device(self) -> torch.device: | |
| """ | |
| Return the device of the model. | |
| """ | |
| return next(self.parameters()).device | |
| def convert_to_fp16(self) -> None: | |
| """ | |
| Convert the torso of the model to float16 for mixed precision training. | |
| """ | |
| self.input_blocks.apply(convert_module_to_f16) | |
| self.blocks.apply(convert_module_to_f16) | |
| self.out_blocks.apply(convert_module_to_f16) | |
| def convert_to_fp32(self) -> None: | |
| """ | |
| Convert the torso of the model back to float32. | |
| """ | |
| self.input_blocks.apply(convert_module_to_f32) | |
| self.blocks.apply(convert_module_to_f32) | |
| self.out_blocks.apply(convert_module_to_f32) | |
| def initialize_weights(self) -> None: | |
| """ | |
| Initialize model weights with specialized initialization for different components. | |
| """ | |
| # Initialize transformer layers with Xavier uniform initialization | |
| def _basic_init(module): | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.xavier_uniform_(module.weight) | |
| if module.bias is not None: | |
| nn.init.constant_(module.bias, 0) | |
| self.apply(_basic_init) | |
| # Initialize timestep embedding MLP with normal distribution | |
| nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
| nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
| # Zero-out adaLN modulation layers for stable training | |
| if self.share_mod: | |
| nn.init.constant_(self.adaLN_modulation[-1].weight, 0) | |
| nn.init.constant_(self.adaLN_modulation[-1].bias, 0) | |
| else: | |
| for block in self.blocks: | |
| nn.init.constant_(block.adaLN_modulation[-1].weight, 0) | |
| nn.init.constant_(block.adaLN_modulation[-1].bias, 0) | |
| # Zero-out output layers for stable training | |
| nn.init.constant_(self.out_layer.weight, 0) | |
| nn.init.constant_(self.out_layer.bias, 0) | |
| # part embedding initialization | |
| nn.init.zeros_(self.part_pe_proj.weight) | |
| nn.init.zeros_(self.part_pe_proj.bias) | |
| # Initialize layer positional embeddings | |
| self.part_pe.weight.data.normal_(mean=0.0,std=0.02) | |
| # Initialize group embedding | |
| nn.init.zeros_(self.mask_group_emb_proj.weight) | |
| nn.init.zeros_(self.mask_group_emb_proj.bias) | |
| self.mask_group_emb.weight.data.normal_(mean=0.0, std=0.02) | |
| def forward(self, x: sp.SparseTensor, t: torch.Tensor, cond: torch.Tensor, **kwargs) -> sp.SparseTensor: | |
| """ | |
| Forward pass of the Structured Latent Flow model. | |
| Args: | |
| x: Input sparse tensor | |
| t: Timestep embedding inputs | |
| cond: Conditional input for cross-attention | |
| **kwargs: Additional arguments, including part_layouts if available | |
| Returns: | |
| Output sparse tensor | |
| """ | |
| # x = x.type(self.dtype) | |
| # t = t.type(self.dtype) | |
| # cond = cond.type(self.dtype) | |
| input_dtype = x.dtype | |
| masks = kwargs['masks'] # [b, h, w] | |
| # Ensure masks are always long type regardless of source | |
| masks = masks.long() # Explicitly convert to long type for embedding | |
| masks = rearrange(masks, 'b h w -> b (h w)') # [b, h*w] | |
| masks_emb = self.mask_group_emb(masks) # [b, h*w, 128] | |
| masks_emb = self.mask_group_emb_proj(masks_emb) # [b, h*w, 1024] | |
| group_emb = torch.zeros((cond.shape[0], cond.shape[1], masks_emb.shape[2]), device=cond.device, dtype=cond.dtype) | |
| group_emb[:, :masks_emb.shape[1], :] = masks_emb | |
| cond = cond + group_emb | |
| cond = cond.type(self.dtype) | |
| # Store original batch IDs for later restoration | |
| original_batch_ids = x.coords[:, 0].clone() | |
| # Create new batch IDs to represent individual parts (instead of batches) | |
| new_batch_ids = torch.zeros_like(original_batch_ids) | |
| # Assign unique IDs to each part across all batches | |
| part_layouts = kwargs['part_layouts'] | |
| part_id = 0 | |
| len_before = 0 | |
| batch_last_partid = [] | |
| for batch_idx, part_layout in enumerate(part_layouts): | |
| for layout_idx, layout in enumerate(part_layout): | |
| adjusted_layout = slice(layout.start + len_before, layout.stop + len_before, layout.step) | |
| new_batch_ids[adjusted_layout] = part_id | |
| part_id += 1 | |
| batch_last_partid.append(part_id) | |
| len_before += part_layout[-1].stop | |
| # Project input to model dimensions and convert to target dtype | |
| x = self.input_layer(x).type(self.dtype) | |
| x = sp.SparseTensor( | |
| feats = x.feats, | |
| coords = torch.cat([new_batch_ids.view(-1, 1), x.coords[:, 1:]], dim=1),) | |
| # Process timestep embedding and condition input | |
| t_emb = self.t_embedder(t) | |
| if self.share_mod: | |
| t_emb = self.adaLN_modulation(t_emb) | |
| t_emb = t_emb.type(self.dtype) | |
| t_emb_updown = [] | |
| for batch_idx, part_layout in enumerate(part_layouts): | |
| t_emb_updown_batch = t_emb[batch_idx:batch_idx+1].repeat(len(part_layout), 1) | |
| t_emb_updown.append(t_emb_updown_batch) | |
| t_emb_updown = torch.cat(t_emb_updown, dim=0).type(self.dtype) | |
| # Store features for skip connections | |
| skips = [] | |
| # Downsampling path through input blocks | |
| for block in self.input_blocks: | |
| x = block(x, t_emb_updown) | |
| skips.append(x.feats) | |
| # Store part-wise batch IDs before transformer processing | |
| part_wise_batch_ids = x.coords[:, 0].clone() | |
| # Convert to batch-wise IDs for transformer blocks | |
| new_transformer_batch_ids = torch.zeros_like(part_wise_batch_ids) | |
| part_ids_in_each_object = torch.zeros_like(part_wise_batch_ids) | |
| start_reform = 0 | |
| last_part_id = 0 | |
| for part_id in batch_last_partid: | |
| mask = (part_wise_batch_ids >= last_part_id) & (part_wise_batch_ids < part_id) | |
| new_transformer_batch_ids[mask] = start_reform | |
| part_ids_in_each_object[mask] = part_wise_batch_ids[mask] - last_part_id | |
| last_part_id = part_id | |
| start_reform += 1 | |
| # Update coordinates with batch-wise IDs for transformer processing | |
| h = sp.SparseTensor( | |
| feats = x.feats, | |
| coords = torch.cat([new_transformer_batch_ids.view(-1, 1), x.coords[:, 1:]], dim=1)) | |
| # Add positional embeddings for transformer blocks | |
| if self.pe_mode == "ape": | |
| # Add absolute positional embeddings to spatial coordinates | |
| h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype) | |
| # Part-with PE; overall is 0 | |
| part_pe = self.part_pe(part_ids_in_each_object) | |
| part_pe = self.part_pe_proj(part_pe) | |
| h = h + part_pe.type(self.dtype) | |
| else: | |
| raise NotImplementedError | |
| # Process with transformer blocks | |
| for block in self.blocks: | |
| h = block(h, t_emb, cond) | |
| h = x.replace(feats=h.feats, coords=torch.cat([part_wise_batch_ids.view(-1, 1), h.coords[:, 1:]], dim=1)) | |
| # Upsampling path with output blocks and skip connections | |
| for block, skip in zip(self.out_blocks, reversed(skips)): | |
| if self.use_skip_connection: | |
| h = block(h.replace(torch.cat([h.feats, skip], dim=1)), t_emb_updown) | |
| else: | |
| h = block(h, t_emb_updown) | |
| h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:])) | |
| h = self.out_layer(h.type(input_dtype)) | |
| h = sp.SparseTensor( | |
| feats = h.feats, | |
| coords = torch.cat([original_batch_ids.view(-1, 1), h.coords[:, 1:]], dim=1)) | |
| return h | |
| class ElasticSLatFlowModel(SparseTransformerElasticMixin, SLatFlowModel): | |
| """ | |
| Structured Latent Flow Model with elastic memory management. | |
| This class extends SLatFlowModel with memory-efficient operations, | |
| allowing training with limited VRAM by dynamically managing memory | |
| allocation for sparse tensors. | |
| """ | |
| pass |