Spaces:
Paused
Paused
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import gc | |
| import json | |
| import logging | |
| import math | |
| import os | |
| import time | |
| from collections import OrderedDict | |
| from dataclasses import dataclass, field | |
| from typing import Any, Dict, List, Mapping, Optional | |
| import numpy as np | |
| import torch | |
| import torch.distributed as dist | |
| import torch.nn as nn | |
| from hydra.utils import instantiate | |
| from iopath.common.file_io import g_pathmgr | |
| from training.optimizer import construct_optimizer | |
| from training.utils.checkpoint_utils import ( | |
| assert_skipped_parameters_are_frozen, | |
| exclude_params_matching_unix_pattern, | |
| load_state_dict_into_model, | |
| with_check_parameter_frozen, | |
| ) | |
| from training.utils.data_utils import BatchedVideoDatapoint | |
| from training.utils.distributed import all_reduce_max, barrier, get_rank | |
| from training.utils.logger import Logger, setup_logging | |
| from training.utils.train_utils import ( | |
| AverageMeter, | |
| collect_dict_keys, | |
| DurationMeter, | |
| get_amp_type, | |
| get_machine_local_and_dist_rank, | |
| get_resume_checkpoint, | |
| human_readable_time, | |
| is_dist_avail_and_initialized, | |
| log_env_variables, | |
| makedir, | |
| MemMeter, | |
| Phase, | |
| ProgressMeter, | |
| set_seeds, | |
| setup_distributed_backend, | |
| ) | |
| CORE_LOSS_KEY = "core_loss" | |
| def unwrap_ddp_if_wrapped(model): | |
| if isinstance(model, torch.nn.parallel.DistributedDataParallel): | |
| return model.module | |
| return model | |
| class OptimAMPConf: | |
| enabled: bool = False | |
| amp_dtype: str = "float16" | |
| class OptimConf: | |
| optimizer: torch.optim.Optimizer = None | |
| options: Optional[Dict[str, Any]] = None | |
| param_group_modifiers: Optional[List] = None | |
| amp: Optional[Dict[str, Any]] = None | |
| gradient_clip: Any = None | |
| gradient_logger: Any = None | |
| def __post_init__(self): | |
| # amp | |
| if not isinstance(self.amp, OptimAMPConf): | |
| if self.amp is None: | |
| self.amp = {} | |
| assert isinstance(self.amp, Mapping) | |
| self.amp = OptimAMPConf(**self.amp) | |
| class DistributedConf: | |
| backend: Optional[str] = None # inferred from accelerator type | |
| comms_dtype: Optional[str] = None | |
| find_unused_parameters: bool = False | |
| timeout_mins: int = 30 | |
| class CudaConf: | |
| cudnn_deterministic: bool = False | |
| cudnn_benchmark: bool = True | |
| allow_tf32: bool = False | |
| # if not None, `matmul_allow_tf32` key will override `allow_tf32` for matmul | |
| matmul_allow_tf32: Optional[bool] = None | |
| # if not None, `cudnn_allow_tf32` key will override `allow_tf32` for cudnn | |
| cudnn_allow_tf32: Optional[bool] = None | |
| class CheckpointConf: | |
| save_dir: str | |
| save_freq: int | |
| save_list: List[int] = field(default_factory=list) | |
| model_weight_initializer: Any = None | |
| save_best_meters: List[str] = None | |
| skip_saving_parameters: List[str] = field(default_factory=list) | |
| initialize_after_preemption: Optional[bool] = None | |
| # if not None, training will be resumed from this checkpoint | |
| resume_from: Optional[str] = None | |
| def infer_missing(self): | |
| if self.initialize_after_preemption is None: | |
| with_skip_saving = len(self.skip_saving_parameters) > 0 | |
| self.initialize_after_preemption = with_skip_saving | |
| return self | |
| class LoggingConf: | |
| log_dir: str | |
| log_freq: int # In iterations | |
| tensorboard_writer: Any | |
| log_level_primary: str = "INFO" | |
| log_level_secondary: str = "ERROR" | |
| log_scalar_frequency: int = 100 | |
| log_visual_frequency: int = 100 | |
| scalar_keys_to_log: Optional[Dict[str, Any]] = None | |
| log_batch_stats: bool = False | |
| class Trainer: | |
| """ | |
| Trainer supporting the DDP training strategies. | |
| """ | |
| EPSILON = 1e-8 | |
| def __init__( | |
| self, | |
| *, # the order of these args can change at any time, so they are keyword-only | |
| data: Dict[str, Any], | |
| model: Dict[str, Any], | |
| logging: Dict[str, Any], | |
| checkpoint: Dict[str, Any], | |
| max_epochs: int, | |
| mode: str = "train", | |
| accelerator: str = "cuda", | |
| seed_value: int = 123, | |
| val_epoch_freq: int = 1, | |
| distributed: Dict[str, bool] = None, | |
| cuda: Dict[str, bool] = None, | |
| env_variables: Optional[Dict[str, Any]] = None, | |
| optim: Optional[Dict[str, Any]] = None, | |
| optim_overrides: Optional[List[Dict[str, Any]]] = None, | |
| meters: Optional[Dict[str, Any]] = None, | |
| loss: Optional[Dict[str, Any]] = None, | |
| ): | |
| self._setup_env_variables(env_variables) | |
| self._setup_timers() | |
| self.data_conf = data | |
| self.model_conf = model | |
| self.logging_conf = LoggingConf(**logging) | |
| self.checkpoint_conf = CheckpointConf(**checkpoint).infer_missing() | |
| self.max_epochs = max_epochs | |
| self.mode = mode | |
| self.val_epoch_freq = val_epoch_freq | |
| self.optim_conf = OptimConf(**optim) if optim is not None else None | |
| self.meters_conf = meters | |
| self.loss_conf = loss | |
| distributed = DistributedConf(**distributed or {}) | |
| cuda = CudaConf(**cuda or {}) | |
| self.where = 0.0 | |
| self._infer_distributed_backend_if_none(distributed, accelerator) | |
| self._setup_device(accelerator) | |
| self._setup_torch_dist_and_backend(cuda, distributed) | |
| makedir(self.logging_conf.log_dir) | |
| setup_logging( | |
| __name__, | |
| output_dir=self.logging_conf.log_dir, | |
| rank=self.rank, | |
| log_level_primary=self.logging_conf.log_level_primary, | |
| log_level_secondary=self.logging_conf.log_level_secondary, | |
| ) | |
| set_seeds(seed_value, self.max_epochs, self.distributed_rank) | |
| log_env_variables() | |
| assert ( | |
| is_dist_avail_and_initialized() | |
| ), "Torch distributed needs to be initialized before calling the trainer." | |
| self._setup_components() # Except Optimizer everything is setup here. | |
| self._move_to_device() | |
| self._construct_optimizers() | |
| self._setup_dataloaders() | |
| self.time_elapsed_meter = DurationMeter("Time Elapsed", self.device, ":.2f") | |
| if self.checkpoint_conf.resume_from is not None: | |
| assert os.path.exists( | |
| self.checkpoint_conf.resume_from | |
| ), f"The 'resume_from' checkpoint {self.checkpoint_conf.resume_from} does not exist!" | |
| dst = os.path.join(self.checkpoint_conf.save_dir, "checkpoint.pt") | |
| if self.distributed_rank == 0 and not os.path.exists(dst): | |
| # Copy the "resume_from" checkpoint to the checkpoint folder | |
| # if there is not a checkpoint to resume from already there | |
| makedir(self.checkpoint_conf.save_dir) | |
| g_pathmgr.copy(self.checkpoint_conf.resume_from, dst) | |
| barrier() | |
| self.load_checkpoint() | |
| self._setup_ddp_distributed_training(distributed, accelerator) | |
| barrier() | |
| def _setup_timers(self): | |
| """ | |
| Initializes counters for elapsed time and eta. | |
| """ | |
| self.start_time = time.time() | |
| self.ckpt_time_elapsed = 0 | |
| self.est_epoch_time = dict.fromkeys([Phase.TRAIN, Phase.VAL], 0) | |
| def _get_meters(self, phase_filters=None): | |
| if self.meters is None: | |
| return {} | |
| meters = {} | |
| for phase, phase_meters in self.meters.items(): | |
| if phase_filters is not None and phase not in phase_filters: | |
| continue | |
| for key, key_meters in phase_meters.items(): | |
| if key_meters is None: | |
| continue | |
| for name, meter in key_meters.items(): | |
| meters[f"{phase}_{key}/{name}"] = meter | |
| return meters | |
| def _infer_distributed_backend_if_none(self, distributed_conf, accelerator): | |
| if distributed_conf.backend is None: | |
| distributed_conf.backend = "nccl" if accelerator == "cuda" else "gloo" | |
| def _setup_env_variables(self, env_variables_conf) -> None: | |
| if env_variables_conf is not None: | |
| for variable_name, value in env_variables_conf.items(): | |
| os.environ[variable_name] = value | |
| def _setup_torch_dist_and_backend(self, cuda_conf, distributed_conf) -> None: | |
| if torch.cuda.is_available(): | |
| torch.backends.cudnn.deterministic = cuda_conf.cudnn_deterministic | |
| torch.backends.cudnn.benchmark = cuda_conf.cudnn_benchmark | |
| torch.backends.cuda.matmul.allow_tf32 = ( | |
| cuda_conf.matmul_allow_tf32 | |
| if cuda_conf.matmul_allow_tf32 is not None | |
| else cuda_conf.allow_tf32 | |
| ) | |
| torch.backends.cudnn.allow_tf32 = ( | |
| cuda_conf.cudnn_allow_tf32 | |
| if cuda_conf.cudnn_allow_tf32 is not None | |
| else cuda_conf.allow_tf32 | |
| ) | |
| self.rank = setup_distributed_backend( | |
| distributed_conf.backend, distributed_conf.timeout_mins | |
| ) | |
| def _setup_device(self, accelerator): | |
| self.local_rank, self.distributed_rank = get_machine_local_and_dist_rank() | |
| if accelerator == "cuda": | |
| self.device = torch.device("cuda", self.local_rank) | |
| torch.cuda.set_device(self.local_rank) | |
| elif accelerator == "cpu": | |
| self.device = torch.device("cpu") | |
| else: | |
| raise ValueError(f"Unsupported accelerator: {accelerator}") | |
| def _setup_ddp_distributed_training(self, distributed_conf, accelerator): | |
| assert isinstance(self.model, torch.nn.Module) | |
| self.model = nn.parallel.DistributedDataParallel( | |
| self.model, | |
| device_ids=[self.local_rank] if accelerator == "cuda" else [], | |
| find_unused_parameters=distributed_conf.find_unused_parameters, | |
| ) | |
| if distributed_conf.comms_dtype is not None: # noqa | |
| from torch.distributed.algorithms import ddp_comm_hooks | |
| amp_type = get_amp_type(distributed_conf.comms_dtype) | |
| if amp_type == torch.bfloat16: | |
| hook = ddp_comm_hooks.default_hooks.bf16_compress_hook | |
| logging.info("Enabling bfloat16 grad communication") | |
| else: | |
| hook = ddp_comm_hooks.default_hooks.fp16_compress_hook | |
| logging.info("Enabling fp16 grad communication") | |
| process_group = None | |
| self.model.register_comm_hook(process_group, hook) | |
| def _move_to_device(self): | |
| logging.info( | |
| f"Moving components to device {self.device} and local rank {self.local_rank}." | |
| ) | |
| self.model.to(self.device) | |
| logging.info( | |
| f"Done moving components to device {self.device} and local rank {self.local_rank}." | |
| ) | |
| def save_checkpoint(self, epoch, checkpoint_names=None): | |
| checkpoint_folder = self.checkpoint_conf.save_dir | |
| makedir(checkpoint_folder) | |
| if checkpoint_names is None: | |
| checkpoint_names = ["checkpoint"] | |
| if ( | |
| self.checkpoint_conf.save_freq > 0 | |
| and (int(epoch) % self.checkpoint_conf.save_freq == 0) | |
| ) or int(epoch) in self.checkpoint_conf.save_list: | |
| checkpoint_names.append(f"checkpoint_{int(epoch)}") | |
| checkpoint_paths = [] | |
| for ckpt_name in checkpoint_names: | |
| checkpoint_paths.append(os.path.join(checkpoint_folder, f"{ckpt_name}.pt")) | |
| state_dict = unwrap_ddp_if_wrapped(self.model).state_dict() | |
| state_dict = exclude_params_matching_unix_pattern( | |
| patterns=self.checkpoint_conf.skip_saving_parameters, state_dict=state_dict | |
| ) | |
| checkpoint = { | |
| "model": state_dict, | |
| "optimizer": self.optim.optimizer.state_dict(), | |
| "epoch": epoch, | |
| "loss": self.loss.state_dict(), | |
| "steps": self.steps, | |
| "time_elapsed": self.time_elapsed_meter.val, | |
| "best_meter_values": self.best_meter_values, | |
| } | |
| if self.optim_conf.amp.enabled: | |
| checkpoint["scaler"] = self.scaler.state_dict() | |
| # DDP checkpoints are only saved on rank 0 (all workers are identical) | |
| if self.distributed_rank != 0: | |
| return | |
| for checkpoint_path in checkpoint_paths: | |
| self._save_checkpoint(checkpoint, checkpoint_path) | |
| def _save_checkpoint(self, checkpoint, checkpoint_path): | |
| """ | |
| Save a checkpoint while guarding against the job being killed in the middle | |
| of checkpoint saving (which corrupts the checkpoint file and ruins the | |
| entire training since usually only the last checkpoint is kept per run). | |
| We first save the new checkpoint to a temp file (with a '.tmp' suffix), and | |
| and move it to overwrite the old checkpoint_path. | |
| """ | |
| checkpoint_path_tmp = f"{checkpoint_path}.tmp" | |
| with g_pathmgr.open(checkpoint_path_tmp, "wb") as f: | |
| torch.save(checkpoint, f) | |
| # after torch.save is completed, replace the old checkpoint with the new one | |
| if g_pathmgr.exists(checkpoint_path): | |
| # remove the old checkpoint_path file first (otherwise g_pathmgr.mv fails) | |
| g_pathmgr.rm(checkpoint_path) | |
| success = g_pathmgr.mv(checkpoint_path_tmp, checkpoint_path) | |
| assert success | |
| def load_checkpoint(self): | |
| ckpt_path = get_resume_checkpoint(self.checkpoint_conf.save_dir) | |
| if ckpt_path is None: | |
| self._init_model_state() | |
| else: | |
| if self.checkpoint_conf.initialize_after_preemption: | |
| self._call_model_initializer() | |
| self._load_resuming_checkpoint(ckpt_path) | |
| def _init_model_state(self): | |
| # Checking that parameters that won't be saved are indeed frozen | |
| # We do this check here before even saving the model to catch errors | |
| # are early as possible and not at the end of the first epoch | |
| assert_skipped_parameters_are_frozen( | |
| patterns=self.checkpoint_conf.skip_saving_parameters, | |
| model=self.model, | |
| ) | |
| # Checking that parameters that won't be saved are initialized from | |
| # within the model definition, unless `initialize_after_preemption` | |
| # is explicitly set to `True`. If not, this is a bug, and after | |
| # preemption, the `skip_saving_parameters` will have random values | |
| allow_init_skip_parameters = self.checkpoint_conf.initialize_after_preemption | |
| with with_check_parameter_frozen( | |
| patterns=self.checkpoint_conf.skip_saving_parameters, | |
| model=self.model, | |
| disabled=allow_init_skip_parameters, | |
| ): | |
| self._call_model_initializer() | |
| def _call_model_initializer(self): | |
| model_weight_initializer = instantiate( | |
| self.checkpoint_conf.model_weight_initializer | |
| ) | |
| if model_weight_initializer is not None: | |
| logging.info( | |
| f"Loading pretrained checkpoint from {self.checkpoint_conf.model_weight_initializer}" | |
| ) | |
| self.model = model_weight_initializer(model=self.model) | |
| def _load_resuming_checkpoint(self, ckpt_path: str): | |
| logging.info(f"Resuming training from {ckpt_path}") | |
| with g_pathmgr.open(ckpt_path, "rb") as f: | |
| checkpoint = torch.load(f, map_location="cpu") | |
| load_state_dict_into_model( | |
| model=self.model, | |
| state_dict=checkpoint["model"], | |
| ignore_missing_keys=self.checkpoint_conf.skip_saving_parameters, | |
| ) | |
| self.optim.optimizer.load_state_dict(checkpoint["optimizer"]) | |
| self.loss.load_state_dict(checkpoint["loss"], strict=True) | |
| self.epoch = checkpoint["epoch"] | |
| self.steps = checkpoint["steps"] | |
| self.ckpt_time_elapsed = checkpoint.get("time_elapsed") | |
| if self.optim_conf.amp.enabled and "scaler" in checkpoint: | |
| self.scaler.load_state_dict(checkpoint["scaler"]) | |
| self.best_meter_values = checkpoint.get("best_meter_values", {}) | |
| if "train_dataset" in checkpoint and self.train_dataset is not None: | |
| self.train_dataset.load_checkpoint_state(checkpoint["train_dataset"]) | |
| def is_intermediate_val_epoch(self, epoch): | |
| return epoch % self.val_epoch_freq == 0 and epoch < self.max_epochs - 1 | |
| def _step( | |
| self, | |
| batch: BatchedVideoDatapoint, | |
| model: nn.Module, | |
| phase: str, | |
| ): | |
| outputs = model(batch) | |
| targets = batch.masks | |
| batch_size = len(batch.img_batch) | |
| key = batch.dict_key # key for dataset | |
| loss = self.loss[key](outputs, targets) | |
| loss_str = f"Losses/{phase}_{key}_loss" | |
| loss_log_str = os.path.join("Step_Losses", loss_str) | |
| # loss contains multiple sub-components we wish to log | |
| step_losses = {} | |
| if isinstance(loss, dict): | |
| step_losses.update( | |
| {f"Losses/{phase}_{key}_{k}": v for k, v in loss.items()} | |
| ) | |
| loss = self._log_loss_detailed_and_return_core_loss( | |
| loss, loss_log_str, self.steps[phase] | |
| ) | |
| if self.steps[phase] % self.logging_conf.log_scalar_frequency == 0: | |
| self.logger.log( | |
| loss_log_str, | |
| loss, | |
| self.steps[phase], | |
| ) | |
| self.steps[phase] += 1 | |
| ret_tuple = {loss_str: loss}, batch_size, step_losses | |
| if phase in self.meters and key in self.meters[phase]: | |
| meters_dict = self.meters[phase][key] | |
| if meters_dict is not None: | |
| for _, meter in meters_dict.items(): | |
| meter.update( | |
| find_stages=outputs, | |
| find_metadatas=batch.metadata, | |
| ) | |
| return ret_tuple | |
| def run(self): | |
| assert self.mode in ["train", "train_only", "val"] | |
| if self.mode == "train": | |
| if self.epoch > 0: | |
| logging.info(f"Resuming training from epoch: {self.epoch}") | |
| # resuming from a checkpoint | |
| if self.is_intermediate_val_epoch(self.epoch - 1): | |
| logging.info("Running previous val epoch") | |
| self.epoch -= 1 | |
| self.run_val() | |
| self.epoch += 1 | |
| self.run_train() | |
| self.run_val() | |
| elif self.mode == "val": | |
| self.run_val() | |
| elif self.mode == "train_only": | |
| self.run_train() | |
| def _setup_dataloaders(self): | |
| self.train_dataset = None | |
| self.val_dataset = None | |
| if self.mode in ["train", "val"]: | |
| self.val_dataset = instantiate(self.data_conf.get(Phase.VAL, None)) | |
| if self.mode in ["train", "train_only"]: | |
| self.train_dataset = instantiate(self.data_conf.train) | |
| def run_train(self): | |
| while self.epoch < self.max_epochs: | |
| dataloader = self.train_dataset.get_loader(epoch=int(self.epoch)) | |
| barrier() | |
| outs = self.train_epoch(dataloader) | |
| self.logger.log_dict(outs, self.epoch) # Logged only on rank 0 | |
| # log train to text file. | |
| if self.distributed_rank == 0: | |
| with g_pathmgr.open( | |
| os.path.join(self.logging_conf.log_dir, "train_stats.json"), | |
| "a", | |
| ) as f: | |
| f.write(json.dumps(outs) + "\n") | |
| # Save checkpoint before validating | |
| self.save_checkpoint(self.epoch + 1) | |
| del dataloader | |
| gc.collect() | |
| # Run val, not running on last epoch since will run after the | |
| # loop anyway | |
| if self.is_intermediate_val_epoch(self.epoch): | |
| self.run_val() | |
| if self.distributed_rank == 0: | |
| self.best_meter_values.update(self._get_trainer_state("train")) | |
| with g_pathmgr.open( | |
| os.path.join(self.logging_conf.log_dir, "best_stats.json"), | |
| "a", | |
| ) as f: | |
| f.write(json.dumps(self.best_meter_values) + "\n") | |
| self.epoch += 1 | |
| # epoch was incremented in the loop but the val step runs out of the loop | |
| self.epoch -= 1 | |
| def run_val(self): | |
| if not self.val_dataset: | |
| return | |
| dataloader = self.val_dataset.get_loader(epoch=int(self.epoch)) | |
| outs = self.val_epoch(dataloader, phase=Phase.VAL) | |
| del dataloader | |
| gc.collect() | |
| self.logger.log_dict(outs, self.epoch) # Logged only on rank 0 | |
| if self.distributed_rank == 0: | |
| with g_pathmgr.open( | |
| os.path.join(self.logging_conf.log_dir, "val_stats.json"), | |
| "a", | |
| ) as f: | |
| f.write(json.dumps(outs) + "\n") | |
| def val_epoch(self, val_loader, phase): | |
| batch_time = AverageMeter("Batch Time", self.device, ":.2f") | |
| data_time = AverageMeter("Data Time", self.device, ":.2f") | |
| mem = MemMeter("Mem (GB)", self.device, ":.2f") | |
| iters_per_epoch = len(val_loader) | |
| curr_phases = [phase] | |
| curr_models = [self.model] | |
| loss_names = [] | |
| for p in curr_phases: | |
| for key in self.loss.keys(): | |
| loss_names.append(f"Losses/{p}_{key}_loss") | |
| loss_mts = OrderedDict( | |
| [(name, AverageMeter(name, self.device, ":.2e")) for name in loss_names] | |
| ) | |
| extra_loss_mts = {} | |
| for model in curr_models: | |
| model.eval() | |
| if hasattr(unwrap_ddp_if_wrapped(model), "on_validation_epoch_start"): | |
| unwrap_ddp_if_wrapped(model).on_validation_epoch_start() | |
| progress = ProgressMeter( | |
| iters_per_epoch, | |
| [batch_time, data_time, mem, self.time_elapsed_meter, *loss_mts.values()], | |
| self._get_meters(curr_phases), | |
| prefix="Val Epoch: [{}]".format(self.epoch), | |
| ) | |
| end = time.time() | |
| for data_iter, batch in enumerate(val_loader): | |
| # measure data loading time | |
| data_time.update(time.time() - end) | |
| batch = batch.to(self.device, non_blocking=True) | |
| # compute output | |
| with torch.no_grad(): | |
| with torch.cuda.amp.autocast( | |
| enabled=(self.optim_conf.amp.enabled if self.optim_conf else False), | |
| dtype=( | |
| get_amp_type(self.optim_conf.amp.amp_dtype) | |
| if self.optim_conf | |
| else None | |
| ), | |
| ): | |
| for phase, model in zip(curr_phases, curr_models): | |
| loss_dict, batch_size, extra_losses = self._step( | |
| batch, | |
| model, | |
| phase, | |
| ) | |
| assert len(loss_dict) == 1 | |
| loss_key, loss = loss_dict.popitem() | |
| loss_mts[loss_key].update(loss.item(), batch_size) | |
| for k, v in extra_losses.items(): | |
| if k not in extra_loss_mts: | |
| extra_loss_mts[k] = AverageMeter(k, self.device, ":.2e") | |
| extra_loss_mts[k].update(v.item(), batch_size) | |
| # measure elapsed time | |
| batch_time.update(time.time() - end) | |
| end = time.time() | |
| self.time_elapsed_meter.update( | |
| time.time() - self.start_time + self.ckpt_time_elapsed | |
| ) | |
| if torch.cuda.is_available(): | |
| mem.update(reset_peak_usage=True) | |
| if data_iter % self.logging_conf.log_freq == 0: | |
| progress.display(data_iter) | |
| if data_iter % self.logging_conf.log_scalar_frequency == 0: | |
| # Log progress meters. | |
| for progress_meter in progress.meters: | |
| self.logger.log( | |
| os.path.join("Step_Stats", phase, progress_meter.name), | |
| progress_meter.val, | |
| self.steps[Phase.VAL], | |
| ) | |
| if data_iter % 10 == 0: | |
| dist.barrier() | |
| self.est_epoch_time[phase] = batch_time.avg * iters_per_epoch | |
| self._log_timers(phase) | |
| for model in curr_models: | |
| if hasattr(unwrap_ddp_if_wrapped(model), "on_validation_epoch_end"): | |
| unwrap_ddp_if_wrapped(model).on_validation_epoch_end() | |
| out_dict = self._log_meters_and_save_best_ckpts(curr_phases) | |
| for k, v in loss_mts.items(): | |
| out_dict[k] = v.avg | |
| for k, v in extra_loss_mts.items(): | |
| out_dict[k] = v.avg | |
| for phase in curr_phases: | |
| out_dict.update(self._get_trainer_state(phase)) | |
| self._reset_meters(curr_phases) | |
| logging.info(f"Meters: {out_dict}") | |
| return out_dict | |
| def _get_trainer_state(self, phase): | |
| return { | |
| "Trainer/where": self.where, | |
| "Trainer/epoch": self.epoch, | |
| f"Trainer/steps_{phase}": self.steps[phase], | |
| } | |
| def train_epoch(self, train_loader): | |
| # Init stat meters | |
| batch_time_meter = AverageMeter("Batch Time", self.device, ":.2f") | |
| data_time_meter = AverageMeter("Data Time", self.device, ":.2f") | |
| mem_meter = MemMeter("Mem (GB)", self.device, ":.2f") | |
| data_times = [] | |
| phase = Phase.TRAIN | |
| iters_per_epoch = len(train_loader) | |
| loss_names = [] | |
| for batch_key in self.loss.keys(): | |
| loss_names.append(f"Losses/{phase}_{batch_key}_loss") | |
| loss_mts = OrderedDict( | |
| [(name, AverageMeter(name, self.device, ":.2e")) for name in loss_names] | |
| ) | |
| extra_loss_mts = {} | |
| progress = ProgressMeter( | |
| iters_per_epoch, | |
| [ | |
| batch_time_meter, | |
| data_time_meter, | |
| mem_meter, | |
| self.time_elapsed_meter, | |
| *loss_mts.values(), | |
| ], | |
| self._get_meters([phase]), | |
| prefix="Train Epoch: [{}]".format(self.epoch), | |
| ) | |
| # Model training loop | |
| self.model.train() | |
| end = time.time() | |
| for data_iter, batch in enumerate(train_loader): | |
| # measure data loading time | |
| data_time_meter.update(time.time() - end) | |
| data_times.append(data_time_meter.val) | |
| batch = batch.to( | |
| self.device, non_blocking=True | |
| ) # move tensors in a tensorclass | |
| try: | |
| self._run_step(batch, phase, loss_mts, extra_loss_mts) | |
| # compute gradient and do optim step | |
| exact_epoch = self.epoch + float(data_iter) / iters_per_epoch | |
| self.where = float(exact_epoch) / self.max_epochs | |
| assert self.where <= 1 + self.EPSILON | |
| if self.where < 1.0: | |
| self.optim.step_schedulers( | |
| self.where, step=int(exact_epoch * iters_per_epoch) | |
| ) | |
| else: | |
| logging.warning( | |
| f"Skipping scheduler update since the training is at the end, i.e, {self.where} of [0,1]." | |
| ) | |
| # Log schedulers | |
| if data_iter % self.logging_conf.log_scalar_frequency == 0: | |
| for j, param_group in enumerate(self.optim.optimizer.param_groups): | |
| for option in self.optim.schedulers[j]: | |
| optim_prefix = ( | |
| "" + f"{j}_" | |
| if len(self.optim.optimizer.param_groups) > 1 | |
| else "" | |
| ) | |
| self.logger.log( | |
| os.path.join("Optim", f"{optim_prefix}", option), | |
| param_group[option], | |
| self.steps[phase], | |
| ) | |
| # Clipping gradients and detecting diverging gradients | |
| if self.gradient_clipper is not None: | |
| self.scaler.unscale_(self.optim.optimizer) | |
| self.gradient_clipper(model=self.model) | |
| if self.gradient_logger is not None: | |
| self.gradient_logger( | |
| self.model, rank=self.distributed_rank, where=self.where | |
| ) | |
| # Optimizer step: the scaler will make sure gradients are not | |
| # applied if the gradients are infinite | |
| self.scaler.step(self.optim.optimizer) | |
| self.scaler.update() | |
| # measure elapsed time | |
| batch_time_meter.update(time.time() - end) | |
| end = time.time() | |
| self.time_elapsed_meter.update( | |
| time.time() - self.start_time + self.ckpt_time_elapsed | |
| ) | |
| mem_meter.update(reset_peak_usage=True) | |
| if data_iter % self.logging_conf.log_freq == 0: | |
| progress.display(data_iter) | |
| if data_iter % self.logging_conf.log_scalar_frequency == 0: | |
| # Log progress meters. | |
| for progress_meter in progress.meters: | |
| self.logger.log( | |
| os.path.join("Step_Stats", phase, progress_meter.name), | |
| progress_meter.val, | |
| self.steps[phase], | |
| ) | |
| # Catching NaN/Inf errors in the loss | |
| except FloatingPointError as e: | |
| raise e | |
| self.est_epoch_time[Phase.TRAIN] = batch_time_meter.avg * iters_per_epoch | |
| self._log_timers(Phase.TRAIN) | |
| self._log_sync_data_times(Phase.TRAIN, data_times) | |
| out_dict = self._log_meters_and_save_best_ckpts([Phase.TRAIN]) | |
| for k, v in loss_mts.items(): | |
| out_dict[k] = v.avg | |
| for k, v in extra_loss_mts.items(): | |
| out_dict[k] = v.avg | |
| out_dict.update(self._get_trainer_state(phase)) | |
| logging.info(f"Losses and meters: {out_dict}") | |
| self._reset_meters([phase]) | |
| return out_dict | |
| def _log_sync_data_times(self, phase, data_times): | |
| data_times = all_reduce_max(torch.tensor(data_times)).tolist() | |
| steps = range(self.steps[phase] - len(data_times), self.steps[phase]) | |
| for step, data_time in zip(steps, data_times): | |
| if step % self.logging_conf.log_scalar_frequency == 0: | |
| self.logger.log( | |
| os.path.join("Step_Stats", phase, "Data Time Synced"), | |
| data_time, | |
| step, | |
| ) | |
| def _run_step( | |
| self, | |
| batch: BatchedVideoDatapoint, | |
| phase: str, | |
| loss_mts: Dict[str, AverageMeter], | |
| extra_loss_mts: Dict[str, AverageMeter], | |
| raise_on_error: bool = True, | |
| ): | |
| """ | |
| Run the forward / backward | |
| """ | |
| # it's important to set grads to None, especially with Adam since 0 | |
| # grads will also update a model even if the step doesn't produce | |
| # gradients | |
| self.optim.zero_grad(set_to_none=True) | |
| with torch.cuda.amp.autocast( | |
| enabled=self.optim_conf.amp.enabled, | |
| dtype=get_amp_type(self.optim_conf.amp.amp_dtype), | |
| ): | |
| loss_dict, batch_size, extra_losses = self._step( | |
| batch, | |
| self.model, | |
| phase, | |
| ) | |
| assert len(loss_dict) == 1 | |
| loss_key, loss = loss_dict.popitem() | |
| if not math.isfinite(loss.item()): | |
| error_msg = f"Loss is {loss.item()}, attempting to stop training" | |
| logging.error(error_msg) | |
| if raise_on_error: | |
| raise FloatingPointError(error_msg) | |
| else: | |
| return | |
| self.scaler.scale(loss).backward() | |
| loss_mts[loss_key].update(loss.item(), batch_size) | |
| for extra_loss_key, extra_loss in extra_losses.items(): | |
| if extra_loss_key not in extra_loss_mts: | |
| extra_loss_mts[extra_loss_key] = AverageMeter( | |
| extra_loss_key, self.device, ":.2e" | |
| ) | |
| extra_loss_mts[extra_loss_key].update(extra_loss.item(), batch_size) | |
| def _log_meters_and_save_best_ckpts(self, phases: List[str]): | |
| logging.info("Synchronizing meters") | |
| out_dict = {} | |
| checkpoint_save_keys = [] | |
| for key, meter in self._get_meters(phases).items(): | |
| meter_output = meter.compute_synced() | |
| is_better_check = getattr(meter, "is_better", None) | |
| for meter_subkey, meter_value in meter_output.items(): | |
| out_dict[os.path.join("Meters_train", key, meter_subkey)] = meter_value | |
| if is_better_check is None: | |
| continue | |
| tracked_meter_key = os.path.join(key, meter_subkey) | |
| if tracked_meter_key not in self.best_meter_values or is_better_check( | |
| meter_value, | |
| self.best_meter_values[tracked_meter_key], | |
| ): | |
| self.best_meter_values[tracked_meter_key] = meter_value | |
| if ( | |
| self.checkpoint_conf.save_best_meters is not None | |
| and key in self.checkpoint_conf.save_best_meters | |
| ): | |
| checkpoint_save_keys.append(tracked_meter_key.replace("/", "_")) | |
| if len(checkpoint_save_keys) > 0: | |
| self.save_checkpoint(self.epoch + 1, checkpoint_save_keys) | |
| return out_dict | |
| def _log_timers(self, phase): | |
| time_remaining = 0 | |
| epochs_remaining = self.max_epochs - self.epoch - 1 | |
| val_epochs_remaining = sum( | |
| n % self.val_epoch_freq == 0 for n in range(self.epoch, self.max_epochs) | |
| ) | |
| # Adding the guaranteed val run at the end if val_epoch_freq doesn't coincide with | |
| # the end epoch. | |
| if (self.max_epochs - 1) % self.val_epoch_freq != 0: | |
| val_epochs_remaining += 1 | |
| # Remove the current val run from estimate | |
| if phase == Phase.VAL: | |
| val_epochs_remaining -= 1 | |
| time_remaining += ( | |
| epochs_remaining * self.est_epoch_time[Phase.TRAIN] | |
| + val_epochs_remaining * self.est_epoch_time[Phase.VAL] | |
| ) | |
| self.logger.log( | |
| os.path.join("Step_Stats", phase, self.time_elapsed_meter.name), | |
| self.time_elapsed_meter.val, | |
| self.steps[phase], | |
| ) | |
| logging.info(f"Estimated time remaining: {human_readable_time(time_remaining)}") | |
| def _reset_meters(self, phases: str) -> None: | |
| for meter in self._get_meters(phases).values(): | |
| meter.reset() | |
| def _check_val_key_match(self, val_keys, phase): | |
| if val_keys is not None: | |
| # Check if there are any duplicates | |
| assert len(val_keys) == len( | |
| set(val_keys) | |
| ), f"Duplicate keys in val datasets, keys: {val_keys}" | |
| # Check that the keys match the meter keys | |
| if self.meters_conf is not None and phase in self.meters_conf: | |
| assert set(val_keys) == set(self.meters_conf[phase].keys()), ( | |
| f"Keys in val datasets do not match the keys in meters." | |
| f"\nMissing in meters: {set(val_keys) - set(self.meters_conf[phase].keys())}" | |
| f"\nMissing in val datasets: {set(self.meters_conf[phase].keys()) - set(val_keys)}" | |
| ) | |
| if self.loss_conf is not None: | |
| loss_keys = set(self.loss_conf.keys()) - set(["all"]) | |
| assert all([k in loss_keys for k in val_keys]), ( | |
| f"Keys in val datasets do not match the keys in losses." | |
| f"\nMissing in losses: {set(val_keys) - loss_keys}" | |
| f"\nMissing in val datasets: {loss_keys - set(val_keys)}" | |
| ) | |
| def _setup_components(self): | |
| # Get the keys for all the val datasets, if any | |
| val_phase = Phase.VAL | |
| val_keys = None | |
| if self.data_conf.get(val_phase, None) is not None: | |
| val_keys = collect_dict_keys(self.data_conf[val_phase]) | |
| # Additional checks on the sanity of the config for val datasets | |
| self._check_val_key_match(val_keys, phase=val_phase) | |
| logging.info("Setting up components: Model, loss, optim, meters etc.") | |
| self.epoch = 0 | |
| self.steps = {Phase.TRAIN: 0, Phase.VAL: 0} | |
| self.logger = Logger(self.logging_conf) | |
| self.model = instantiate(self.model_conf, _convert_="all") | |
| print_model_summary(self.model) | |
| self.loss = None | |
| if self.loss_conf: | |
| self.loss = { | |
| key: el # wrap_base_loss(el) | |
| for (key, el) in instantiate(self.loss_conf, _convert_="all").items() | |
| } | |
| self.loss = nn.ModuleDict(self.loss) | |
| self.meters = {} | |
| self.best_meter_values = {} | |
| if self.meters_conf: | |
| self.meters = instantiate(self.meters_conf, _convert_="all") | |
| self.scaler = torch.amp.GradScaler( | |
| self.device, | |
| enabled=self.optim_conf.amp.enabled if self.optim_conf else False, | |
| ) | |
| self.gradient_clipper = ( | |
| instantiate(self.optim_conf.gradient_clip) if self.optim_conf else None | |
| ) | |
| self.gradient_logger = ( | |
| instantiate(self.optim_conf.gradient_logger) if self.optim_conf else None | |
| ) | |
| logging.info("Finished setting up components: Model, loss, optim, meters etc.") | |
| def _construct_optimizers(self): | |
| self.optim = construct_optimizer( | |
| self.model, | |
| self.optim_conf.optimizer, | |
| self.optim_conf.options, | |
| self.optim_conf.param_group_modifiers, | |
| ) | |
| def _log_loss_detailed_and_return_core_loss(self, loss, loss_str, step): | |
| core_loss = loss.pop(CORE_LOSS_KEY) | |
| if step % self.logging_conf.log_scalar_frequency == 0: | |
| for k in loss: | |
| log_str = os.path.join(loss_str, k) | |
| self.logger.log(log_str, loss[k], step) | |
| return core_loss | |
| def print_model_summary(model: torch.nn.Module, log_dir: str = ""): | |
| """ | |
| Prints the model and the number of parameters in the model. | |
| # Multiple packages provide this info in a nice table format | |
| # However, they need us to provide an `input` (as they also write down the output sizes) | |
| # Our models are complex, and a single input is restrictive. | |
| # https://github.com/sksq96/pytorch-summary | |
| # https://github.com/nmhkahn/torchsummaryX | |
| """ | |
| if get_rank() != 0: | |
| return | |
| param_kwargs = {} | |
| trainable_parameters = sum( | |
| p.numel() for p in model.parameters(**param_kwargs) if p.requires_grad | |
| ) | |
| total_parameters = sum(p.numel() for p in model.parameters(**param_kwargs)) | |
| non_trainable_parameters = total_parameters - trainable_parameters | |
| logging.info("==" * 10) | |
| logging.info(f"Summary for model {type(model)}") | |
| logging.info(f"Model is {model}") | |
| logging.info(f"\tTotal parameters {get_human_readable_count(total_parameters)}") | |
| logging.info( | |
| f"\tTrainable parameters {get_human_readable_count(trainable_parameters)}" | |
| ) | |
| logging.info( | |
| f"\tNon-Trainable parameters {get_human_readable_count(non_trainable_parameters)}" | |
| ) | |
| logging.info("==" * 10) | |
| if log_dir: | |
| output_fpath = os.path.join(log_dir, "model.txt") | |
| with g_pathmgr.open(output_fpath, "w") as f: | |
| print(model, file=f) | |
| PARAMETER_NUM_UNITS = [" ", "K", "M", "B", "T"] | |
| def get_human_readable_count(number: int) -> str: | |
| """ | |
| Abbreviates an integer number with K, M, B, T for thousands, millions, | |
| billions and trillions, respectively. | |
| Examples: | |
| >>> get_human_readable_count(123) | |
| '123 ' | |
| >>> get_human_readable_count(1234) # (one thousand) | |
| '1.2 K' | |
| >>> get_human_readable_count(2e6) # (two million) | |
| '2.0 M' | |
| >>> get_human_readable_count(3e9) # (three billion) | |
| '3.0 B' | |
| >>> get_human_readable_count(4e14) # (four hundred trillion) | |
| '400 T' | |
| >>> get_human_readable_count(5e15) # (more than trillion) | |
| '5,000 T' | |
| Args: | |
| number: a positive integer number | |
| Return: | |
| A string formatted according to the pattern described above. | |
| """ | |
| assert number >= 0 | |
| labels = PARAMETER_NUM_UNITS | |
| num_digits = int(np.floor(np.log10(number)) + 1 if number > 0 else 1) | |
| num_groups = int(np.ceil(num_digits / 3)) | |
| num_groups = min(num_groups, len(labels)) # don't abbreviate beyond trillions | |
| shift = -3 * (num_groups - 1) | |
| number = number * (10**shift) | |
| index = num_groups - 1 | |
| if index < 1 or number >= 100: | |
| return f"{int(number):,d} {labels[index]}" | |
| else: | |
| return f"{number:,.1f} {labels[index]}" | |