Spaces:
Paused
Paused
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import contextlib | |
| import fnmatch | |
| import logging | |
| from typing import ( | |
| Any, | |
| Callable, | |
| Dict, | |
| List, | |
| Mapping, | |
| Optional, | |
| Sequence, | |
| Set, | |
| Tuple, | |
| Union, | |
| ) | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from iopath.common.file_io import g_pathmgr | |
| from torch.jit._script import RecursiveScriptModule | |
| def unix_pattern_to_parameter_names( | |
| constraints: List[str], all_parameter_names: Sequence[str] | |
| ) -> Union[None, Set[str]]: | |
| """ | |
| Go through the list of parameter names and select those that match | |
| any of the provided constraints | |
| """ | |
| parameter_names = [] | |
| for param_name in constraints: | |
| matching_parameters = set(fnmatch.filter(all_parameter_names, param_name)) | |
| assert ( | |
| len(matching_parameters) > 0 | |
| ), f"param_names {param_name} don't match any param in the given names." | |
| parameter_names.append(matching_parameters) | |
| return set.union(*parameter_names) | |
| def filter_params_matching_unix_pattern( | |
| patterns: List[str], state_dict: Dict[str, torch.Tensor] | |
| ) -> Dict[str, torch.Tensor]: | |
| """ | |
| Remove from the state dictionary the parameters matching the provided unix patterns | |
| Args: | |
| patterns: the list of unix patterns to exclude | |
| state_dict: the dictionary to filter | |
| Returns: | |
| A new state dictionary | |
| """ | |
| if len(patterns) == 0: | |
| return {} | |
| all_keys = list(state_dict.keys()) | |
| included_keys = unix_pattern_to_parameter_names(patterns, all_keys) | |
| return {k: state_dict[k] for k in included_keys} | |
| def exclude_params_matching_unix_pattern( | |
| patterns: List[str], state_dict: Dict[str, torch.Tensor] | |
| ) -> Dict[str, torch.Tensor]: | |
| """ | |
| Remove from the state dictionary the parameters matching the provided unix patterns | |
| Args: | |
| patterns: the list of unix patterns to exclude | |
| state_dict: the dictionary to filter | |
| Returns: | |
| A new state dictionary | |
| """ | |
| if len(patterns) == 0: | |
| return state_dict | |
| all_keys = list(state_dict.keys()) | |
| excluded_keys = unix_pattern_to_parameter_names(patterns, all_keys) | |
| return {k: v for k, v in state_dict.items() if k not in excluded_keys} | |
| def _get_state_dict_summary(state_dict: Dict[str, torch.Tensor]): | |
| keys = [] | |
| trace = [] | |
| for k, v in state_dict.items(): | |
| keys.append(k) | |
| trace.append(v.sum().item()) | |
| trace = np.array(trace)[np.argsort(keys)] | |
| return trace | |
| def assert_skipped_parameters_are_frozen(model: nn.Module, patterns: List[str]): | |
| """ | |
| Verifies that all the parameters matching the provided patterns | |
| are frozen - this acts as a safeguard when ignoring parameter | |
| when saving checkpoints - if the parameters are in fact trainable | |
| """ | |
| if not patterns: | |
| return | |
| frozen_state_dict = filter_params_matching_unix_pattern( | |
| patterns=patterns, state_dict=model.state_dict() | |
| ) | |
| non_frozen_keys = { | |
| n | |
| for n, p in model.named_parameters() | |
| if n in frozen_state_dict and p.requires_grad | |
| } | |
| if non_frozen_keys: | |
| raise ValueError( | |
| f"Parameters excluded with `skip_saving_parameters` should be frozen: {non_frozen_keys}" | |
| ) | |
| def with_check_parameter_frozen( | |
| model: nn.Module, patterns: List[str], disabled: bool = True | |
| ): | |
| """ | |
| Context manager that inspects a model surrounding a piece of code | |
| and verifies if the model has been updated by this piece of code | |
| The function will raise an exception if the model has been updated | |
| on at least one of the parameter that matches one of the pattern | |
| Args: | |
| model: the model that might have been updated | |
| patterns: for the parameters we want to observe | |
| allowed: | |
| """ | |
| if not patterns or disabled: | |
| yield | |
| return | |
| frozen_state_dict = filter_params_matching_unix_pattern( | |
| patterns=patterns, state_dict=model.state_dict() | |
| ) | |
| summary_before = _get_state_dict_summary(frozen_state_dict) | |
| yield | |
| frozen_state_dict = filter_params_matching_unix_pattern( | |
| patterns=patterns, state_dict=model.state_dict() | |
| ) | |
| summary_after = _get_state_dict_summary(frozen_state_dict) | |
| if not np.allclose(summary_before, summary_after, atol=1e-6): | |
| raise ValueError( | |
| f""" | |
| The `model_weight_initializer` has initialized parameters frozen with `skip_saving_parameters`. | |
| You can resolve this error by either initializing those parameters from within the model definition | |
| or using the flag `trainer.checkpoint.initialize_after_preemption` to True. | |
| """ | |
| ) | |
| class CkptExcludeKernel: | |
| """ | |
| Removes the keys from the given model state_dict that match the key_pattern. | |
| Args: | |
| key_pattern: Patterns used to select the keys in the state_dict | |
| that are eligible for this kernel. | |
| """ | |
| def __init__(self, key_pattern: List[str]): | |
| self.key_pattern = key_pattern | |
| def __call__(self, state_dict: Dict): | |
| """ | |
| Args: | |
| state_dict: A dictionary representing the given checkpoint's state dict. | |
| """ | |
| if len(self.key_pattern) == 0: | |
| return state_dict | |
| exclude_keys = unix_pattern_to_parameter_names( | |
| self.key_pattern, state_dict.keys() | |
| ) | |
| return {k: v for k, v in state_dict.items() if k not in exclude_keys} | |
| def load_checkpoint( | |
| path_list: List[str], | |
| pick_recursive_keys: Optional[List[str]] = None, | |
| map_location: str = "cpu", | |
| ) -> Any: | |
| """ | |
| Loads a checkpoint from the specified path. | |
| Args: | |
| path_list: A list of paths which contain the checkpoint. Each element | |
| is tried (in order) until a file that exists is found. That file is then | |
| used to read the checkpoint. | |
| pick_recursive_keys: Picks sub dicts from the loaded checkpoint if not None. | |
| For pick_recursive_keys = ["a", "b"], will return checkpoint_dict["a"]["b"] | |
| map_location (str): a function, torch.device, string or a dict specifying how to | |
| remap storage locations | |
| Returns: Model with the matchin pre-trained weights loaded. | |
| """ | |
| path_exists = False | |
| for path in path_list: | |
| if g_pathmgr.exists(path): | |
| path_exists = True | |
| break | |
| if not path_exists: | |
| raise ValueError(f"No path exists in {path_list}") | |
| with g_pathmgr.open(path, "rb") as f: | |
| checkpoint = torch.load(f, map_location=map_location) | |
| logging.info(f"Loaded checkpoint from {path}") | |
| if pick_recursive_keys is not None: | |
| for key in pick_recursive_keys: | |
| checkpoint = checkpoint[key] | |
| return checkpoint | |
| def get_state_dict(checkpoint, ckpt_state_dict_keys): | |
| if isinstance(checkpoint, RecursiveScriptModule): | |
| # This is a torchscript JIT model | |
| return checkpoint.state_dict() | |
| pre_train_dict = checkpoint | |
| for i, key in enumerate(ckpt_state_dict_keys): | |
| if (isinstance(pre_train_dict, Mapping) and key not in pre_train_dict) or ( | |
| isinstance(pre_train_dict, Sequence) and key >= len(pre_train_dict) | |
| ): | |
| key_str = ( | |
| '["' + '"]["'.join(list(map(ckpt_state_dict_keys[:i], str))) + '"]' | |
| ) | |
| raise KeyError( | |
| f"'{key}' not found in checkpoint{key_str} " | |
| f"with keys: {pre_train_dict.keys()}" | |
| ) | |
| pre_train_dict = pre_train_dict[key] | |
| return pre_train_dict | |
| def load_checkpoint_and_apply_kernels( | |
| checkpoint_path: str, | |
| checkpoint_kernels: List[Callable] = None, | |
| ckpt_state_dict_keys: Tuple[str] = ("state_dict",), | |
| map_location: str = "cpu", | |
| ) -> nn.Module: | |
| """ | |
| Performs checkpoint loading with a variety of pre-processing kernel applied in | |
| sequence. | |
| Args: | |
| checkpoint_path (str): Path to the checkpoint. | |
| checkpoint_kernels List(Callable): A list of checkpoint processing kernels | |
| to apply in the specified order. Supported kernels include `CkptIncludeKernel`, | |
| `CkptExcludeKernel`, etc. These kernels are applied in the | |
| given order. | |
| ckpt_state_dict_keys (str): Keys containing the model state dict. | |
| map_location (str): a function, torch.device, string or a dict specifying how to | |
| remap storage locations | |
| Returns: Model with the matchin pre-trained weights loaded. | |
| """ | |
| assert g_pathmgr.exists(checkpoint_path), "Checkpoint '{}' not found".format( | |
| checkpoint_path | |
| ) | |
| # Load the checkpoint on CPU to avoid GPU mem spike. | |
| with g_pathmgr.open(checkpoint_path, "rb") as f: | |
| checkpoint = torch.load(f, map_location=map_location) | |
| pre_train_dict = get_state_dict(checkpoint, ckpt_state_dict_keys) | |
| # Not logging into info etc since it's a huge log | |
| logging.debug( | |
| "Loaded Checkpoint State Dict pre-kernel application: %s" | |
| % str(", ".join(list(pre_train_dict.keys()))) | |
| ) | |
| # Apply kernels | |
| if checkpoint_kernels is not None: | |
| for f in checkpoint_kernels: | |
| pre_train_dict = f(state_dict=pre_train_dict) | |
| logging.debug( | |
| "Loaded Checkpoint State Dict Post-kernel application %s" | |
| % str(", ".join(list(pre_train_dict.keys()))) | |
| ) | |
| return pre_train_dict | |
| def check_load_state_dict_errors( | |
| missing_keys, | |
| unexpected_keys, | |
| strict: bool, | |
| ignore_missing_keys: List[str] = None, | |
| ignore_unexpected_keys: List[str] = None, | |
| ): | |
| if ignore_missing_keys is not None and len(ignore_missing_keys) > 0: | |
| ignored_keys = unix_pattern_to_parameter_names( | |
| ignore_missing_keys, missing_keys | |
| ) | |
| missing_keys = [key for key in missing_keys if key not in ignored_keys] | |
| if ignore_unexpected_keys is not None and len(ignore_unexpected_keys) > 0: | |
| ignored_unexpected_keys = unix_pattern_to_parameter_names( | |
| ignore_unexpected_keys, unexpected_keys | |
| ) | |
| unexpected_keys = [ | |
| key for key in unexpected_keys if key not in ignored_unexpected_keys | |
| ] | |
| err = "State key mismatch." | |
| if unexpected_keys: | |
| err += f" Unexpected keys: {unexpected_keys}." | |
| if missing_keys: | |
| err += f" Missing keys: {missing_keys}." | |
| if unexpected_keys or missing_keys: | |
| logging.warning(err) | |
| if unexpected_keys or strict: | |
| raise KeyError(err) | |
| def load_state_dict_into_model( | |
| state_dict: Dict, | |
| model: nn.Module, | |
| strict: bool = True, | |
| ignore_missing_keys: List[str] = None, | |
| ignore_unexpected_keys: List[str] = None, | |
| checkpoint_kernels: List[Callable] = None, | |
| ): | |
| """ | |
| Loads a state dict into the given model. | |
| Args: | |
| state_dict: A dictionary containing the model's | |
| state dict, or a subset if strict is False | |
| model: Model to load the checkpoint weights into | |
| strict: raise if the state_dict has missing state keys | |
| ignore_missing_keys: unix pattern of keys to ignore | |
| """ | |
| # Apply kernels | |
| if checkpoint_kernels is not None: | |
| for f in checkpoint_kernels: | |
| state_dict = f(state_dict=state_dict) | |
| missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) | |
| check_load_state_dict_errors( | |
| missing_keys, | |
| unexpected_keys, | |
| strict=strict, | |
| ignore_missing_keys=ignore_missing_keys, | |
| ignore_unexpected_keys=ignore_unexpected_keys, | |
| ) | |
| return model | |