Spaces:
Running
on
Zero
Running
on
Zero
| import copy | |
| from einops import repeat | |
| from diffusers import __version__ | |
| from diffusers.models.modeling_utils import ( | |
| _add_variant, _get_checkpoint_shard_files, _get_model_file, # diffusers.utils | |
| _determine_device_map, _fetch_index_file, # diffusers.models.model_loading_utils | |
| ) | |
| from diffusers.models.modeling_utils import * | |
| from diffusers.models.transformers.transformer_sd3 import * | |
| from extensions.diffusers_diffsplat.models.mv_attention import JointMVTransformerBlock | |
| if is_torch_version(">=", "1.9.0"): | |
| _LOW_CPU_MEM_USAGE_DEFAULT = True | |
| else: | |
| _LOW_CPU_MEM_USAGE_DEFAULT = False | |
| # Copied from diffusers.models.transformers.transformer_sd3.SD3Transformer2DModel | |
| # The only modifications: `JointTransformerBlock` -> `JointMVTransformerBlock` | |
| class SD3TransformerMV2DModel( | |
| ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, SD3Transformer2DLoadersMixin | |
| ): | |
| """ | |
| The Transformer model introduced in Stable Diffusion 3. | |
| Reference: https://arxiv.org/abs/2403.03206 | |
| Parameters: | |
| sample_size (`int`): The width of the latent images. This is fixed during training since | |
| it is used to learn a number of position embeddings. | |
| patch_size (`int`): Patch size to turn the input data into small patches. | |
| in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. | |
| num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use. | |
| attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. | |
| num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. | |
| cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
| caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`. | |
| pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. | |
| out_channels (`int`, defaults to 16): Number of output channels. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| sample_size: int = 128, | |
| patch_size: int = 2, | |
| in_channels: int = 16, | |
| num_layers: int = 18, | |
| attention_head_dim: int = 64, | |
| num_attention_heads: int = 18, | |
| joint_attention_dim: int = 4096, | |
| caption_projection_dim: int = 1152, | |
| pooled_projection_dim: int = 2048, | |
| out_channels: int = 16, | |
| pos_embed_max_size: int = 96, | |
| dual_attention_layers: Tuple[ | |
| int, ... | |
| ] = (), # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5 | |
| qk_norm: Optional[str] = None, | |
| ): | |
| super().__init__() | |
| default_out_channels = in_channels | |
| self.out_channels = out_channels if out_channels is not None else default_out_channels | |
| self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim | |
| self.pos_embed = PatchEmbed( | |
| height=self.config.sample_size, | |
| width=self.config.sample_size, | |
| patch_size=self.config.patch_size, | |
| in_channels=self.config.in_channels, | |
| embed_dim=self.inner_dim, | |
| pos_embed_max_size=pos_embed_max_size, # hard-code for now. | |
| ) | |
| self.time_text_embed = CombinedTimestepTextProjEmbeddings( | |
| embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim | |
| ) | |
| self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim) | |
| # `attention_head_dim` is doubled to account for the mixing. | |
| # It needs to crafted when we get the actual checkpoints. | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| JointMVTransformerBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=self.config.num_attention_heads, | |
| attention_head_dim=self.config.attention_head_dim, | |
| context_pre_only=i == num_layers - 1, | |
| qk_norm=qk_norm, | |
| use_dual_attention=True if i in dual_attention_layers else False, | |
| ) | |
| for i in range(self.config.num_layers) | |
| ] | |
| ) | |
| self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) | |
| self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) | |
| self.gradient_checkpointing = False | |
| # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
| def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
| """ | |
| Sets the attention processor to use [feed forward | |
| chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
| Parameters: | |
| chunk_size (`int`, *optional*): | |
| The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
| over each tensor of dim=`dim`. | |
| dim (`int`, *optional*, defaults to `0`): | |
| The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
| or dim=1 (sequence length). | |
| """ | |
| if dim not in [0, 1]: | |
| raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
| # By default chunk size is 1 | |
| chunk_size = chunk_size or 1 | |
| def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
| if hasattr(module, "set_chunk_feed_forward"): | |
| module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
| for child in module.children(): | |
| fn_recursive_feed_forward(child, chunk_size, dim) | |
| for module in self.children(): | |
| fn_recursive_feed_forward(module, chunk_size, dim) | |
| # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking | |
| def disable_forward_chunking(self): | |
| def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
| if hasattr(module, "set_chunk_feed_forward"): | |
| module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
| for child in module.children(): | |
| fn_recursive_feed_forward(child, chunk_size, dim) | |
| for module in self.children(): | |
| fn_recursive_feed_forward(module, None, 0) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor() | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0 | |
| def fuse_qkv_projections(self): | |
| """ | |
| Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
| are fused. For cross-attention modules, key and value projection matrices are fused. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| self.original_attn_processors = None | |
| for _, attn_processor in self.attn_processors.items(): | |
| if "Added" in str(attn_processor.__class__.__name__): | |
| raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
| self.original_attn_processors = self.attn_processors | |
| for module in self.modules(): | |
| if isinstance(module, Attention): | |
| module.fuse_projections(fuse=True) | |
| self.set_attn_processor(FusedJointAttnProcessor2_0()) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
| def unfuse_qkv_projections(self): | |
| """Disables the fused QKV projection if enabled. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| if self.original_attn_processors is not None: | |
| self.set_attn_processor(self.original_attn_processors) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| pooled_projections: torch.FloatTensor = None, | |
| timestep: torch.LongTensor = None, | |
| block_controlnet_hidden_states: List = None, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| return_dict: bool = True, | |
| skip_layers: Optional[List[int]] = None, | |
| ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | |
| """ | |
| The [`SD3Transformer2DModel`] forward method. | |
| Args: | |
| hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): | |
| Input `hidden_states`. | |
| encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): | |
| Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
| pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): | |
| Embeddings projected from the embeddings of input conditions. | |
| timestep (`torch.LongTensor`): | |
| Used to indicate denoising step. | |
| block_controlnet_hidden_states (`list` of `torch.Tensor`): | |
| A list of tensors that if specified are added to the residuals of transformer blocks. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
| tuple. | |
| skip_layers (`list` of `int`, *optional*): | |
| A list of layer indices to skip during the forward pass. | |
| Returns: | |
| If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
| `tuple` where the first element is the sample tensor. | |
| """ | |
| if joint_attention_kwargs is not None: | |
| joint_attention_kwargs = joint_attention_kwargs.copy() | |
| lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
| else: | |
| lora_scale = 1.0 | |
| if USE_PEFT_BACKEND: | |
| # weight the lora layers by setting `lora_scale` for each PEFT layer | |
| scale_lora_layers(self, lora_scale) | |
| else: | |
| if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: | |
| logger.warning( | |
| "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
| ) | |
| height, width = hidden_states.shape[-2:] | |
| hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too. | |
| temb = self.time_text_embed(timestep, pooled_projections) | |
| encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
| if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: | |
| ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") | |
| ip_hidden_states, ip_temb = self.image_proj(ip_adapter_image_embeds, timestep) | |
| joint_attention_kwargs.update(ip_hidden_states=ip_hidden_states, temb=ip_temb) | |
| for index_block, block in enumerate(self.transformer_blocks): | |
| # Skip specified layers | |
| is_skip = True if skip_layers is not None and index_block in skip_layers else False | |
| if torch.is_grad_enabled() and self.gradient_checkpointing and not is_skip: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| encoder_hidden_states, | |
| temb, | |
| joint_attention_kwargs, | |
| **ckpt_kwargs, | |
| ) | |
| elif not is_skip: | |
| encoder_hidden_states, hidden_states = block( | |
| hidden_states=hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| temb=temb, | |
| joint_attention_kwargs=joint_attention_kwargs, | |
| ) | |
| # controlnet residual | |
| if block_controlnet_hidden_states is not None and block.context_pre_only is False: | |
| interval_control = len(self.transformer_blocks) / len(block_controlnet_hidden_states) | |
| hidden_states = hidden_states + block_controlnet_hidden_states[int(index_block / interval_control)] | |
| temb = repeat(temb, "b d -> (b v) d", v=joint_attention_kwargs.get("num_views", 1)) | |
| hidden_states = self.norm_out(hidden_states, temb) | |
| hidden_states = self.proj_out(hidden_states) | |
| # unpatchify | |
| patch_size = self.config.patch_size | |
| height = height // patch_size | |
| width = width // patch_size | |
| hidden_states = hidden_states.reshape( | |
| shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels) | |
| ) | |
| hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
| output = hidden_states.reshape( | |
| shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) | |
| ) | |
| if USE_PEFT_BACKEND: | |
| # remove `lora_scale` from each PEFT layer | |
| unscale_lora_layers(self, lora_scale) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer2DModelOutput(sample=output) | |
| # Copied from diffusers.models.modeling_utils.ModelingMixin.from_pretrained | |
| def from_pretrained_new( | |
| cls, | |
| pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], | |
| sample_size: int = 32, # `input_res` / 8 | |
| in_channels: int = 16, | |
| out_channels: int = 16, | |
| zero_init_conv_in: bool = True, | |
| view_concat_condition: bool = False, | |
| input_concat_plucker: bool = False, | |
| input_concat_binary_mask: bool = False, | |
| from_scratch: bool = False, # do not load pretrained parameters | |
| **kwargs | |
| ): | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) | |
| force_download = kwargs.pop("force_download", False) | |
| from_flax = kwargs.pop("from_flax", False) | |
| proxies = kwargs.pop("proxies", None) | |
| output_loading_info = kwargs.pop("output_loading_info", False) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| torch_dtype = kwargs.pop("torch_dtype", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| device_map = kwargs.pop("device_map", None) | |
| max_memory = kwargs.pop("max_memory", None) | |
| offload_folder = kwargs.pop("offload_folder", None) | |
| offload_state_dict = kwargs.pop("offload_state_dict", False) | |
| low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) | |
| variant = kwargs.pop("variant", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| if low_cpu_mem_usage and not is_accelerate_available(): | |
| low_cpu_mem_usage = False | |
| logger.warning( | |
| "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | |
| " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | |
| " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | |
| " install accelerate\n```\n." | |
| ) | |
| if device_map is not None and not is_accelerate_available(): | |
| raise NotImplementedError( | |
| "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set" | |
| " `device_map=None`. You can install accelerate with `pip install accelerate`." | |
| ) | |
| # Check if we can handle device_map and dispatching the weights | |
| if device_map is not None and not is_torch_version(">=", "1.9.0"): | |
| raise NotImplementedError( | |
| "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
| " `device_map=None`." | |
| ) | |
| if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | |
| raise NotImplementedError( | |
| "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
| " `low_cpu_mem_usage=False`." | |
| ) | |
| if low_cpu_mem_usage is False and device_map is not None: | |
| raise ValueError( | |
| f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and" | |
| " dispatching. Please make sure to set `low_cpu_mem_usage=True`." | |
| ) | |
| # change device_map into a map if we passed an int, a str or a torch.device | |
| if isinstance(device_map, torch.device): | |
| device_map = {"": device_map} | |
| elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: | |
| try: | |
| device_map = {"": torch.device(device_map)} | |
| except RuntimeError: | |
| raise ValueError( | |
| "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or " | |
| f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}." | |
| ) | |
| elif isinstance(device_map, int): | |
| if device_map < 0: | |
| raise ValueError( | |
| "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' " | |
| ) | |
| else: | |
| device_map = {"": device_map} | |
| if device_map is not None: | |
| if low_cpu_mem_usage is None: | |
| low_cpu_mem_usage = True | |
| elif not low_cpu_mem_usage: | |
| raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`") | |
| if low_cpu_mem_usage: | |
| if device_map is not None and not is_torch_version(">=", "1.10"): | |
| # The max memory utils require PyTorch >= 1.10 to have torch.cuda.mem_get_info. | |
| raise ValueError("`low_cpu_mem_usage` and `device_map` require PyTorch >= 1.10.") | |
| # Load config if we don't provide a configuration | |
| config_path = pretrained_model_name_or_path | |
| user_agent = { | |
| "diffusers": __version__, | |
| "file_type": "model", | |
| "framework": "pytorch", | |
| } | |
| # load config | |
| config, unused_kwargs, commit_hash = cls.load_config( | |
| config_path, | |
| cache_dir=cache_dir, | |
| return_unused_kwargs=True, | |
| return_commit_hash=True, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| **kwargs, | |
| ) | |
| # Modify configs for the multi-view cross-domain diffusion model | |
| config["_class_name"] = cls.__name__ | |
| config["sample_size"] = sample_size # training resolution | |
| config["in_channels"] = in_channels | |
| config["out_channels"] = out_channels | |
| config["view_concat_condition"] = view_concat_condition | |
| config["input_concat_plucker"] = input_concat_plucker | |
| config["input_concat_binary_mask"] = input_concat_binary_mask | |
| # Determine if we're loading from a directory of sharded checkpoints. | |
| is_sharded = False | |
| index_file = None | |
| is_local = os.path.isdir(pretrained_model_name_or_path) | |
| index_file = _fetch_index_file( | |
| is_local=is_local, | |
| pretrained_model_name_or_path=pretrained_model_name_or_path, | |
| subfolder=subfolder or "", | |
| use_safetensors=use_safetensors, | |
| cache_dir=cache_dir, | |
| variant=variant, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| if index_file is not None and index_file.is_file(): | |
| is_sharded = True | |
| if is_sharded and from_flax: | |
| raise ValueError("Loading of sharded checkpoints is not supported when `from_flax=True`.") | |
| # load model | |
| model_file = None | |
| if from_flax: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=FLAX_WEIGHTS_NAME, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| model = cls.from_config(config, **unused_kwargs) | |
| # Convert the weights | |
| from diffusers.models.modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model | |
| if not from_scratch: | |
| model = load_flax_checkpoint_in_pytorch_model(model, model_file) | |
| else: | |
| if is_sharded: | |
| sharded_ckpt_cached_folder, sharded_metadata = _get_checkpoint_shard_files( | |
| pretrained_model_name_or_path, | |
| index_file, | |
| cache_dir=cache_dir, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| user_agent=user_agent, | |
| revision=revision, | |
| subfolder=subfolder or "", | |
| ) | |
| elif use_safetensors and not is_sharded: | |
| try: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| except IOError as e: | |
| logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}") | |
| if not allow_pickle: | |
| raise | |
| logger.warning( | |
| "Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead." | |
| ) | |
| if model_file is None and not is_sharded: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=_add_variant(WEIGHTS_NAME, variant), | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| if low_cpu_mem_usage: | |
| # Instantiate model with empty weights | |
| with accelerate.init_empty_weights(): | |
| model = cls.from_config(config, **unused_kwargs) | |
| if not from_scratch: | |
| # if device_map is None, load the state dict and move the params from meta device to the cpu | |
| if device_map is None and not is_sharded: | |
| param_device = "cpu" | |
| state_dict = load_state_dict(model_file, variant=variant) | |
| model._convert_deprecated_attention_blocks(state_dict) | |
| # move the params from meta device to cpu | |
| missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
| if len(missing_keys) > 0: | |
| raise ValueError( | |
| f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are" | |
| f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" | |
| " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" | |
| " those weights or else make sure your checkpoint file is correct." | |
| ) | |
| unexpected_keys = load_model_dict_into_meta( | |
| model, | |
| state_dict, | |
| device=param_device, | |
| dtype=torch_dtype, | |
| model_name_or_path=pretrained_model_name_or_path, | |
| ) | |
| if cls._keys_to_ignore_on_load_unexpected is not None: | |
| for pat in cls._keys_to_ignore_on_load_unexpected: | |
| unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
| if len(unexpected_keys) > 0: | |
| logger.warning( | |
| f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
| ) | |
| else: # else let accelerate handle loading and dispatching. | |
| # Load weights and dispatch according to the device_map | |
| # by default the device_map is None and the weights are loaded on the CPU | |
| force_hook = True | |
| device_map = _determine_device_map(model, device_map, max_memory, torch_dtype) | |
| if device_map is None and is_sharded: | |
| # we load the parameters on the cpu | |
| device_map = {"": "cpu"} | |
| force_hook = False | |
| try: | |
| accelerate.load_checkpoint_and_dispatch( | |
| model, | |
| model_file if not is_sharded else index_file, | |
| device_map, | |
| max_memory=max_memory, | |
| offload_folder=offload_folder, | |
| offload_state_dict=offload_state_dict, | |
| dtype=torch_dtype, | |
| force_hooks=force_hook, | |
| strict=True, | |
| ) | |
| except AttributeError as e: | |
| # When using accelerate loading, we do not have the ability to load the state | |
| # dict and rename the weight names manually. Additionally, accelerate skips | |
| # torch loading conventions and directly writes into `module.{_buffers, _parameters}` | |
| # (which look like they should be private variables?), so we can't use the standard hooks | |
| # to rename parameters on load. We need to mimic the original weight names so the correct | |
| # attributes are available. After we have loaded the weights, we convert the deprecated | |
| # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert | |
| # the weights so we don't have to do this again. | |
| if "'Attention' object has no attribute" in str(e): | |
| logger.warning( | |
| f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}" | |
| " was saved with deprecated attention block weight names. We will load it with the deprecated attention block" | |
| " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion," | |
| " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint," | |
| " please also re-upload it or open a PR on the original repository." | |
| ) | |
| model._temp_convert_self_to_deprecated_attention_blocks() | |
| accelerate.load_checkpoint_and_dispatch( | |
| model, | |
| model_file if not is_sharded else index_file, | |
| device_map, | |
| max_memory=max_memory, | |
| offload_folder=offload_folder, | |
| offload_state_dict=offload_state_dict, | |
| dtype=torch_dtype, | |
| force_hooks=force_hook, | |
| strict=True, | |
| ) | |
| model._undo_temp_convert_self_to_deprecated_attention_blocks() | |
| else: | |
| raise e | |
| loading_info = { | |
| "missing_keys": [], | |
| "unexpected_keys": [], | |
| "mismatched_keys": [], | |
| "error_msgs": [], | |
| } | |
| else: | |
| model = cls.from_config(config, **unused_kwargs) | |
| if not from_scratch: | |
| state_dict = load_state_dict(model_file, variant=variant) | |
| model._convert_deprecated_attention_blocks(state_dict) | |
| state_dict_original = copy.deepcopy(state_dict) | |
| model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model( | |
| model, | |
| state_dict, | |
| model_file, | |
| pretrained_model_name_or_path, | |
| ignore_mismatched_sizes=ignore_mismatched_sizes, | |
| ) | |
| loading_info = { | |
| "missing_keys": missing_keys, | |
| "unexpected_keys": unexpected_keys, | |
| "mismatched_keys": mismatched_keys, | |
| "error_msgs": error_msgs, | |
| } | |
| else: | |
| loading_info = { | |
| "missing_keys": [], | |
| "unexpected_keys": [], | |
| "mismatched_keys": [], | |
| "error_msgs": [], | |
| } | |
| if not from_scratch: | |
| # Handle initilizations for some layers | |
| ## Patch embedding conv | |
| pos_embed_proj_weight = state_dict_original["pos_embed.proj.weight"] | |
| latent_channels = pos_embed_proj_weight.shape[1] | |
| if model.pos_embed.proj.weight.data.shape[1] != latent_channels: | |
| # Initialize from the original weights | |
| model.pos_embed.proj.weight.data[:, :latent_channels] = pos_embed_proj_weight | |
| # Whether to place all zero to new layers ? | |
| if zero_init_conv_in: | |
| model.pos_embed.proj.weight.data[:, latent_channels:] = 0 | |
| if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): | |
| raise ValueError( | |
| f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." | |
| ) | |
| elif torch_dtype is not None: | |
| model = model.to(torch_dtype) | |
| model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
| # Set model in evaluation mode to deactivate DropOut modules by default | |
| model.eval() | |
| if output_loading_info: | |
| return model, loading_info | |
| return model | |