Spaces:
Running
on
Zero
Running
on
Zero
| from diffusers.models.unets.unet_2d_blocks import * | |
| from extensions.diffusers_diffsplat.models.transformers import TransformerMV2DModel | |
| # Copied from diffusers.models.unets.unet_2d_blocks.get_down_block | |
| # The only modifications: `CrossAttnDownBlock2D` -> `CrossAttnDownBlockMV2D` | |
| def get_down_mvblock( | |
| down_block_type: str, | |
| num_layers: int, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| add_downsample: bool, | |
| resnet_eps: float, | |
| resnet_act_fn: str, | |
| transformer_layers_per_block: int = 1, | |
| num_attention_heads: Optional[int] = None, | |
| resnet_groups: Optional[int] = None, | |
| cross_attention_dim: Optional[int] = None, | |
| downsample_padding: Optional[int] = None, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| resnet_time_scale_shift: str = "default", | |
| attention_type: str = "default", | |
| resnet_skip_time_act: bool = False, | |
| resnet_out_scale_factor: float = 1.0, | |
| cross_attention_norm: Optional[str] = None, | |
| attention_head_dim: Optional[int] = None, | |
| downsample_type: Optional[str] = None, | |
| dropout: float = 0.0, | |
| ): | |
| # If attn head dim is not defined, we default it to the number of heads | |
| if attention_head_dim is None: | |
| logger.warning( | |
| f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | |
| ) | |
| attention_head_dim = num_attention_heads | |
| down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type | |
| if down_block_type == "DownBlock2D": | |
| return DownBlock2D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| dropout=dropout, | |
| add_downsample=add_downsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| downsample_padding=downsample_padding, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| ) | |
| # Multi-view Self-Attn | |
| elif down_block_type == "CrossAttnDownBlockMV2D": | |
| if cross_attention_dim is None: | |
| raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMV2D") | |
| return CrossAttnDownBlockMV2D( | |
| num_layers=num_layers, | |
| transformer_layers_per_block=transformer_layers_per_block, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| dropout=dropout, | |
| add_downsample=add_downsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| downsample_padding=downsample_padding, | |
| cross_attention_dim=cross_attention_dim, | |
| num_attention_heads=num_attention_heads, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| attention_type=attention_type, | |
| ) | |
| raise ValueError(f"{down_block_type} does not exist.") | |
| # Copied from diffusers.models.unets.unet_2d_blocks.get_mid_block | |
| # The only modifications: `UNetMidBlock2DCrossAttn` -> `UNetMidBlockMV2DCrossAttn` | |
| def get_mid_mvblock( | |
| mid_block_type: str, | |
| temb_channels: int, | |
| in_channels: int, | |
| resnet_eps: float, | |
| resnet_act_fn: str, | |
| resnet_groups: int, | |
| output_scale_factor: float = 1.0, | |
| transformer_layers_per_block: int = 1, | |
| num_attention_heads: Optional[int] = None, | |
| cross_attention_dim: Optional[int] = None, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| mid_block_only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| resnet_time_scale_shift: str = "default", | |
| attention_type: str = "default", | |
| resnet_skip_time_act: bool = False, | |
| cross_attention_norm: Optional[str] = None, | |
| attention_head_dim: Optional[int] = 1, | |
| dropout: float = 0.0, | |
| ): | |
| # Multi-view Self-Attn | |
| if mid_block_type == "UNetMidBlockMV2DCrossAttn": | |
| return UNetMidBlockMV2DCrossAttn( | |
| transformer_layers_per_block=transformer_layers_per_block, | |
| in_channels=in_channels, | |
| temb_channels=temb_channels, | |
| dropout=dropout, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| cross_attention_dim=cross_attention_dim, | |
| num_attention_heads=num_attention_heads, | |
| resnet_groups=resnet_groups, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| attention_type=attention_type, | |
| ) | |
| elif mid_block_type is None: | |
| return None | |
| else: | |
| raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
| # Copied from diffusers.models.unets.unet_2d_blocks.get_up_block | |
| # The only modifications: `CrossAttnUpBlock2D` -> `CrossAttnUpBlockMV2D` | |
| def get_up_mvblock( | |
| up_block_type: str, | |
| num_layers: int, | |
| in_channels: int, | |
| out_channels: int, | |
| prev_output_channel: int, | |
| temb_channels: int, | |
| add_upsample: bool, | |
| resnet_eps: float, | |
| resnet_act_fn: str, | |
| resolution_idx: Optional[int] = None, | |
| transformer_layers_per_block: int = 1, | |
| num_attention_heads: Optional[int] = None, | |
| resnet_groups: Optional[int] = None, | |
| cross_attention_dim: Optional[int] = None, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| resnet_time_scale_shift: str = "default", | |
| attention_type: str = "default", | |
| resnet_skip_time_act: bool = False, | |
| resnet_out_scale_factor: float = 1.0, | |
| cross_attention_norm: Optional[str] = None, | |
| attention_head_dim: Optional[int] = None, | |
| upsample_type: Optional[str] = None, | |
| dropout: float = 0.0, | |
| ) -> nn.Module: | |
| # If attn head dim is not defined, we default it to the number of heads | |
| if attention_head_dim is None: | |
| logger.warning( | |
| f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | |
| ) | |
| attention_head_dim = num_attention_heads | |
| up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type | |
| if up_block_type == "UpBlock2D": | |
| return UpBlock2D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=temb_channels, | |
| resolution_idx=resolution_idx, | |
| dropout=dropout, | |
| add_upsample=add_upsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| ) | |
| # Multi-view Self-Attn | |
| elif up_block_type == "CrossAttnUpBlockMV2D": | |
| if cross_attention_dim is None: | |
| raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMV2D") | |
| return CrossAttnUpBlockMV2D( | |
| num_layers=num_layers, | |
| transformer_layers_per_block=transformer_layers_per_block, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=temb_channels, | |
| resolution_idx=resolution_idx, | |
| dropout=dropout, | |
| add_upsample=add_upsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| num_attention_heads=num_attention_heads, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| attention_type=attention_type, | |
| ) | |
| raise ValueError(f"{up_block_type} does not exist.") | |
| # Copied from diffusers.models.unets.unet_2d_blocks.CrossAttnDownBlock2D | |
| # The only modifications: `Transformer2DModel` -> `TransformerMV2DModel` | |
| class CrossAttnDownBlockMV2D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| num_attention_heads: int = 1, | |
| cross_attention_dim: int = 1280, | |
| output_scale_factor: float = 1.0, | |
| downsample_padding: int = 1, | |
| add_downsample: bool = True, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| attention_type: str = "default", | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| self.has_cross_attention = True | |
| self.num_attention_heads = num_attention_heads | |
| if isinstance(transformer_layers_per_block, int): | |
| transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock2D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| if not dual_cross_attention: | |
| attentions.append( | |
| TransformerMV2DModel( | |
| num_attention_heads, | |
| out_channels // num_attention_heads, | |
| in_channels=out_channels, | |
| num_layers=transformer_layers_per_block[i], | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| attention_type=attention_type, | |
| ) | |
| ) | |
| else: | |
| attentions.append( | |
| DualTransformer2DModel( | |
| num_attention_heads, | |
| out_channels // num_attention_heads, | |
| in_channels=out_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| Downsample2D( | |
| out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| temb: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| additional_residuals: Optional[torch.Tensor] = None, | |
| ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: | |
| if cross_attention_kwargs is not None: | |
| if cross_attention_kwargs.get("scale", None) is not None: | |
| logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") | |
| output_states = () | |
| blocks = list(zip(self.resnets, self.attentions)) | |
| for i, (resnet, attn) in enumerate(blocks): | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), | |
| hidden_states, | |
| temb, | |
| **ckpt_kwargs, | |
| ) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| return_dict=False, | |
| )[0] | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| return_dict=False, | |
| )[0] | |
| # apply additional residuals to the output of the last pair of resnet and attention blocks | |
| if i == len(blocks) - 1 and additional_residuals is not None: | |
| hidden_states = hidden_states + additional_residuals | |
| output_states = output_states + (hidden_states,) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states = output_states + (hidden_states,) | |
| return hidden_states, output_states | |
| # Copied from diffusers.models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn | |
| # The only modifications: `Transformer2DModel` -> `TransformerMV2DModel` | |
| class UNetMidBlockMV2DCrossAttn(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| temb_channels: int, | |
| out_channels: Optional[int] = None, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_groups_out: Optional[int] = None, | |
| resnet_pre_norm: bool = True, | |
| num_attention_heads: int = 1, | |
| output_scale_factor: float = 1.0, | |
| cross_attention_dim: int = 1280, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| upcast_attention: bool = False, | |
| attention_type: str = "default", | |
| ): | |
| super().__init__() | |
| out_channels = out_channels or in_channels | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.has_cross_attention = True | |
| self.num_attention_heads = num_attention_heads | |
| resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
| # support for variable transformer layers per block | |
| if isinstance(transformer_layers_per_block, int): | |
| transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
| resnet_groups_out = resnet_groups_out or resnet_groups | |
| # there is always at least one resnet | |
| resnets = [ | |
| ResnetBlock2D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| groups_out=resnet_groups_out, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ] | |
| attentions = [] | |
| for i in range(num_layers): | |
| if not dual_cross_attention: | |
| attentions.append( | |
| TransformerMV2DModel( | |
| num_attention_heads, | |
| out_channels // num_attention_heads, | |
| in_channels=out_channels, | |
| num_layers=transformer_layers_per_block[i], | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups_out, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| attention_type=attention_type, | |
| ) | |
| ) | |
| else: | |
| attentions.append( | |
| DualTransformer2DModel( | |
| num_attention_heads, | |
| out_channels // num_attention_heads, | |
| in_channels=out_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| ) | |
| ) | |
| resnets.append( | |
| ResnetBlock2D( | |
| in_channels=out_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups_out, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| temb: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| if cross_attention_kwargs is not None: | |
| if cross_attention_kwargs.get("scale", None) is not None: | |
| logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") | |
| hidden_states = self.resnets[0](hidden_states, temb) | |
| for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| return_dict=False, | |
| )[0] | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), | |
| hidden_states, | |
| temb, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| return_dict=False, | |
| )[0] | |
| hidden_states = resnet(hidden_states, temb) | |
| return hidden_states | |
| # Copied from diffusers.models.unets.unet_2d_blocks.CrossAttnUpBlock2D | |
| # The only modifications: `Transformer2DModel` -> `TransformerMV2DModel` | |
| class CrossAttnUpBlockMV2D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| prev_output_channel: int, | |
| temb_channels: int, | |
| resolution_idx: Optional[int] = None, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| num_attention_heads: int = 1, | |
| cross_attention_dim: int = 1280, | |
| output_scale_factor: float = 1.0, | |
| add_upsample: bool = True, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| attention_type: str = "default", | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| self.has_cross_attention = True | |
| self.num_attention_heads = num_attention_heads | |
| if isinstance(transformer_layers_per_block, int): | |
| transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
| for i in range(num_layers): | |
| res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
| resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock2D( | |
| in_channels=resnet_in_channels + res_skip_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| if not dual_cross_attention: | |
| attentions.append( | |
| TransformerMV2DModel( | |
| num_attention_heads, | |
| out_channels // num_attention_heads, | |
| in_channels=out_channels, | |
| num_layers=transformer_layers_per_block[i], | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| attention_type=attention_type, | |
| ) | |
| ) | |
| else: | |
| attentions.append( | |
| DualTransformer2DModel( | |
| num_attention_heads, | |
| out_channels // num_attention_heads, | |
| in_channels=out_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
| else: | |
| self.upsamplers = None | |
| self.gradient_checkpointing = False | |
| self.resolution_idx = resolution_idx | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| res_hidden_states_tuple: Tuple[torch.Tensor, ...], | |
| temb: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| upsample_size: Optional[int] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| if cross_attention_kwargs is not None: | |
| if cross_attention_kwargs.get("scale", None) is not None: | |
| logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") | |
| is_freeu_enabled = ( | |
| getattr(self, "s1", None) | |
| and getattr(self, "s2", None) | |
| and getattr(self, "b1", None) | |
| and getattr(self, "b2", None) | |
| ) | |
| for resnet, attn in zip(self.resnets, self.attentions): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| # FreeU: Only operate on the first two stages | |
| if is_freeu_enabled: | |
| hidden_states, res_hidden_states = apply_freeu( | |
| self.resolution_idx, | |
| hidden_states, | |
| res_hidden_states, | |
| s1=self.s1, | |
| s2=self.s2, | |
| b1=self.b1, | |
| b2=self.b2, | |
| ) | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), | |
| hidden_states, | |
| temb, | |
| **ckpt_kwargs, | |
| ) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| return_dict=False, | |
| )[0] | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| return_dict=False, | |
| )[0] | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |