from PIL.Image import Image as PILImage from torch import Tensor import PIL.Image import torch.nn.functional as F import torchvision.transforms.functional as TF from einops import rearrange, repeat from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import * from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import * # Copied from https://github.com/camenduru/GRM/blob/master/third_party/generative_models/instant3d.py def build_gaussians(H: int, W: int, std: float, bg: float = 0.) -> Tensor: assert H == W # TODO: support non-square latents x_vals = torch.arange(W) y_vals = torch.arange(H) x_vals, y_vals = torch.meshgrid(x_vals, y_vals, indexing="ij") x_vals = x_vals.unsqueeze(0).unsqueeze(0) y_vals = y_vals.unsqueeze(0).unsqueeze(0) center_x, center_y = W//2., H//2. gaussian = torch.exp(-((x_vals - center_x) ** 2 + (y_vals - center_y) ** 2) / (2 * (std * H) ** 2)) # cf. Instant3D A.5 gaussian = gaussian / gaussian.max() gaussian = (gaussian + bg).clamp(0., 1.) # gray background for `bg` > 0. gaussian = gaussian.repeat(1, 3, 1, 1) gaussian = 1. - gaussian # (1, 3, H, W) in [0, 1] gaussian = torch.cat([gaussian, gaussian], dim=-1) gaussian = torch.cat([gaussian, gaussian], dim=-2) # (1, 3, 2H, 2W) gaussians = F.interpolate(gaussian, (H, W), mode="bilinear", align_corners=False) gaussians = gaussians * 2. - 1. # (1, 3, H, W) in [-1, 1] return gaussians # Copied from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion def _append_dims(x, target_dims): """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" dims_to_append = target_dims - x.ndim if dims_to_append < 0: raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less") return x[(...,) + (None,) * dims_to_append] # Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline class PixArtAlphaMVPipeline(PixArtAlphaPipeline): # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps def get_timesteps_img2img(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] if hasattr(self.scheduler, "set_begin_index"): self.scheduler.set_begin_index(t_start * self.scheduler.order) return timesteps, num_inference_steps - t_start # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents def prepare_latents_img2img(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: init_latents = image else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(generator, list): if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} " ) init_latents = [ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = retrieve_latents(self.vae.encode(image), generator=generator) init_latents = self.vae.config.scaling_factor * init_latents if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: # expand init_latents for batch_size deprecation_message = ( f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) additional_image_per_prompt = batch_size // init_latents.shape[0] init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." ) else: init_latents = torch.cat([init_latents], dim=0) shape = init_latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents return latents def prepare_image_latents(self, image, device, num_images_per_prompt, do_classifier_free_guidance): dtype = next(self.vae.parameters()).dtype assert isinstance(image, Tensor) assert image.ndim == 5 and image.shape[2] == 3 V_cond = image.shape[1] image = rearrange(image, "b v c h w -> (b v) c h w") # VAE latent image = image.to(device).to(dtype) # not resize like CLIP preprocessing image = image * 2. - 1. image_latents = self.vae.encode(image).latent_dist.mode() * self.vae.config.scaling_factor image_latents = rearrange(image_latents, "(b v) c h w -> b v c h w", v=V_cond) # duplicate image latents for each generation per prompt, using mps friendly method image_latents = image_latents.unsqueeze(1) bs_latent, _, v, c, h, w = image_latents.shape image_latents = image_latents.repeat(1, num_images_per_prompt, 1, 1, 1, 1) image_latents = image_latents.view(bs_latent * num_images_per_prompt, v, c, h, w) if do_classifier_free_guidance: negative_latents = torch.zeros_like(image_latents) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes image_latents = torch.cat([negative_latents, image_latents]) return image_latents def prepare_plucker(self, plucker, num_images_per_prompt, do_classifier_free_guidance): plucker = plucker.to(dtype=self.transformer.dtype, device=self.transformer.device) # duplicate plucker embeddings for each generation per prompt, using mps friendly method plucker = plucker.unsqueeze(1) bs, _, c, h, w = plucker.shape plucker = plucker.repeat(1, num_images_per_prompt, 1, 1, 1) plucker = plucker.view(bs * num_images_per_prompt, c, h, w) if do_classifier_free_guidance: plucker = torch.cat([plucker]*2, dim=0) return plucker @torch.no_grad() def __call__( self, image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor] = None, prompt: Union[str, List[str]] = None, num_views: int = 4, plucker: Optional[torch.FloatTensor] = None, triangle_cfg_scaling: bool = False, min_guidance_scale: float = 1.0, max_guidance_scale: float = 3.0, init_std: Optional[float] = 0., init_noise_strength: Optional[float] = 1., init_bg: Optional[float] = 0., negative_prompt: Optional[str] = None, num_inference_steps: int = 20, timesteps: List[int] = None, sigmas: List[float] = None, guidance_scale: float = 4.5, num_images_per_prompt: Optional[int] = 1, height: Optional[int] = None, width: Optional[int] = None, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, clean_caption: bool = True, use_resolution_binning: bool = False, # `True` for original PixArt max_sequence_length: int = 120, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: if "mask_feature" in kwargs: deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) # 1. Check inputs. Raise error if not correct height = height or self.transformer.config.sample_size * self.vae_scale_factor width = width or self.transformer.config.sample_size * self.vae_scale_factor if use_resolution_binning: if self.transformer.config.sample_size == 128: aspect_ratio_bin = ASPECT_RATIO_1024_BIN elif self.transformer.config.sample_size == 64: aspect_ratio_bin = ASPECT_RATIO_512_BIN elif self.transformer.config.sample_size == 32: aspect_ratio_bin = ASPECT_RATIO_256_BIN else: raise ValueError("Invalid sample size") orig_height, orig_width = height, width height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin) self.check_inputs( prompt, height, width, negative_prompt, callback_steps, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, ) V_cond = 0 if image is not None: assert image.ndim == 5 # (B, V_cond, 3, H, W) V_cond = image.shape[1] cross_attention_kwargs = {"num_views": num_views + (V_cond if self.transformer.config.view_concat_condition else 0)} # 2. Default height and width to transformer if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = (guidance_scale if not triangle_cfg_scaling else max_guidance_scale) > 1.0 # 3. Encode input prompt ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = self.encode_prompt( prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, clean_caption=clean_caption, max_sequence_length=max_sequence_length, ) prompt_embeds = repeat(prompt_embeds, "b n d -> (b v) n d", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0)) prompt_attention_mask = repeat(prompt_attention_mask, "b n -> (b v) n", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0)) if do_classifier_free_guidance: negative_prompt_embeds = repeat(negative_prompt_embeds, "b n d -> (b v) n d", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0)) negative_prompt_attention_mask = repeat(negative_prompt_attention_mask, "b n -> (b v) n", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0)) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) # 3.1 Prepare input image latents if self.transformer.config.view_concat_condition: if image is not None: image_latents = self.prepare_image_latents(image, device, num_images_per_prompt, do_classifier_free_guidance) else: image_latents = torch.zeros( ( batch_size * num_images_per_prompt, self.transformer.config.out_channels // 2, # `num_channels_latents`; self.transformer.config.in_channels int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ), dtype=prompt_embeds.dtype, device=device, ) if V_cond > 0: image_latents = image_latents.unsqueeze(1).repeat(1, V_cond, 1, 1, 1) if do_classifier_free_guidance: image_latents = torch.cat([image_latents] * 2, dim=0) # 3.2 Prepare Plucker embeddings if plucker is not None: assert plucker.shape[0] == batch_size * (num_views + (V_cond if self.transformer.config.view_concat_condition else 0)) plucker = self.prepare_plucker(plucker, num_images_per_prompt, do_classifier_free_guidance) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) # 5. Prepare latents. latent_channels = self.transformer.config.out_channels // 2 # self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt * num_views, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents, ) # 5.1 Gaussian blobs initialization; cf. Instant3D if init_std > 0. and init_noise_strength < 1.: row = int(num_views**0.5) col = num_views - row init_image = build_gaussians(row * height, col * width, init_std, init_bg).to(device=device, dtype=latents.dtype) init_image = rearrange(init_image, "b d (r h) (c w) -> (b r c) d h w", r=row, c=col) timesteps, num_inference_steps = self.get_timesteps_img2img(num_inference_steps, init_noise_strength, device) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) latents = self.prepare_latents_img2img( init_image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator, ) # 5.2 Prepare guidance scale if triangle_cfg_scaling: # Triangle CFG scaling; the first view is input condition guidance_scale = torch.cat([ torch.linspace(min_guidance_scale, max_guidance_scale, num_views//2 + 1).unsqueeze(0), torch.linspace(max_guidance_scale, min_guidance_scale, num_views - (num_views//2 + 1) + 2)[1:-1].unsqueeze(0) ], dim=-1) guidance_scale = guidance_scale.to(device, latents.dtype) guidance_scale = guidance_scale.repeat(batch_size * num_images_per_prompt, 1) guidance_scale = _append_dims(guidance_scale, latents.unsqueeze(1).ndim) # (B, V, 1, 1, 1) guidance_scale = rearrange(guidance_scale, "b v c h w -> (b v) c h w") # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 6.1 Prepare micro-conditions. added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if self.transformer.config.sample_size == 128: resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1) aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1) resolution = resolution.to(dtype=prompt_embeds.dtype, device=device) aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device) if do_classifier_free_guidance: resolution = torch.cat([resolution, resolution], dim=0) aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0) added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio} # 7. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # Concatenate input latents with others latent_model_input = rearrange(latent_model_input, "(b v) c h w -> b v c h w", v=num_views) if self.transformer.config.view_concat_condition: latent_model_input = torch.cat([image_latents, latent_model_input], dim=1) # (B, V_in+V_cond, 4, H', W') if self.transformer.config.input_concat_plucker: plucker = F.interpolate(plucker, size=latent_model_input.shape[-2:], mode="bilinear", align_corners=False) plucker = rearrange(plucker, "(b v) c h w -> b v c h w", v=num_views + (V_cond if self.transformer.config.view_concat_condition else 0)) latent_model_input = torch.cat([latent_model_input, plucker], dim=2) # (B, V_in(+V_cond), 4+6, H', W') plucker = rearrange(plucker, "b v c h w -> (b v) c h w") if self.transformer.config.input_concat_binary_mask: if self.transformer.config.view_concat_condition: latent_model_input = torch.cat([ torch.cat([latent_model_input[:, :V_cond, ...], torch.zeros_like(latent_model_input[:, :V_cond, 0:1, ...])], dim=2), torch.cat([latent_model_input[:, V_cond:, ...], torch.ones_like(latent_model_input[:, V_cond:, 0:1, ...])], dim=2), ], dim=1) # (B, V_in+V_cond, 4+6+1, H', W') else: latent_model_input = torch.cat([ torch.cat([latent_model_input, torch.ones_like(latent_model_input[:, :, 0:1, ...])], dim=2), ], dim=1) # (B, V_in, 4+6+1, H', W') latent_model_input = rearrange(latent_model_input, "b v c h w -> (b v) c h w") current_timestep = t if not torch.is_tensor(current_timestep): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = latent_model_input.device.type == "mps" if isinstance(current_timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) elif len(current_timestep.shape) == 0: current_timestep = current_timestep[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML current_timestep = current_timestep.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( latent_model_input, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, timestep=current_timestep, added_cond_kwargs=added_cond_kwargs, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] # Only keep the noise prediction for the latents if self.transformer.config.view_concat_condition: noise_pred = rearrange(noise_pred, "(b v) c h w -> b v c h w", v=num_views+V_cond) noise_pred = rearrange(noise_pred[:, V_cond:, ...], "b v c h w -> (b v) c h w") # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: noise_pred = noise_pred.chunk(2, dim=1)[0] else: noise_pred = noise_pred # compute previous image: x_t -> x_t-1 if num_inference_steps == 1: # For DMD one step sampling: https://arxiv.org/abs/2311.18828 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).pred_original_sample else: latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] if use_resolution_binning: image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height) else: image = latents if not output_type == "latent": image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)