File size: 3,020 Bytes
48a55a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import os

def load_assets(model_config):
    """
    Loads all models, tokenizer, and optimizer states.

    Args:
        model_config (dict): The model configuration dictionary from the YAML file.

    Returns:
        tuple: (pretrained_model, finetuned_model, optimizer_v_state, tokenizer)
    """
    device = model_config.get("device", "cuda" if torch.cuda.is_available() else "cpu")
    dtype_str = model_config.get("dtype", "bfloat16")
    
    if dtype_str == "bfloat16":
        dtype = torch.bfloat16
    elif dtype_str == "float16":
        dtype = torch.float16
    elif dtype_str == "float32":
        dtype = torch.float32
    else:
        raise ValueError(f"Unsupported dtype: {dtype_str}")

    print(f"Using device: {device} and dtype: {dtype_str}")

    # Load base model (w_0)
    print(f"Loading base model: {model_config['base_model_id']}")
    pretrained_model = AutoModelForCausalLM.from_pretrained(
        model_config['base_model_id'],
        torch_dtype=dtype,
        device_map=device,
        trust_remote_code=True
    )
    print("βœ“ Base model loaded.")

    # Load fine-tuned model (w_T)
    print(f"Loading fine-tuned model: {model_config['finetuned_model_id']}")
    finetuned_model = AutoModelForCausalLM.from_pretrained(
        model_config['finetuned_model_id'],
        torch_dtype=dtype,
        device_map=device,
        trust_remote_code=True
    )
    print("βœ“ Fine-tuned model loaded.")
    
    # Load tokenizer
    print(f"Loading tokenizer from: {model_config['finetuned_model_id']}")
    tokenizer = AutoTokenizer.from_pretrained(
        model_config['finetuned_model_id'],
        trust_remote_code=True
    )
    print("βœ“ Tokenizer loaded.")

    # Load optimizer states (v_T)
    optimizer_v_state = None
    if model_config.get('optimizer_states_file'):
        print(f"Loading optimizer states from HF: {model_config['optimizer_states_file']}")
        repo_id, filename = model_config['optimizer_states_file'].split(":")
        try:
            cached_file = hf_hub_download(repo_id=repo_id, filename=filename)
            optimizer_v_state = load_file(cached_file)
            print(f"βœ“ Loaded {len(optimizer_v_state)} optimizer state tensors.")
        except Exception as e:
            print(f"Could not download optimizer states from HF Hub: {e}")
            raise
    elif model_config.get('local_optimizer_states_path'):
        path = model_config['local_optimizer_states_path']
        print(f"Loading optimizer states from local path: {path}")
        if os.path.exists(path):
            optimizer_v_state = load_file(path)
            print(f"βœ“ Loaded {len(optimizer_v_state)} optimizer state tensors.")
        else:
            raise FileNotFoundError(f"Optimizer states file not found at: {path}")

    return pretrained_model, finetuned_model, optimizer_v_state, tokenizer