import torch import os import json import io import matplotlib.pyplot as plt import matplotlib.colors as mcolors import matplotlib.patches as mpatches from matplotlib_venn import venn2, venn3 import seaborn as sns import numpy as np import pandas as pd from tqdm import tqdm from typing import List, Dict, Any, Optional from PIL import Image from safetensors import safe_open from huggingface_hub import hf_hub_download def _set_publication_fonts(scale_factor=1.0): """ Sets matplotlib to use publication-ready fonts matching NeurIPS/LaTeX style. Args: scale_factor: Factor to scale all font sizes. Use >1.0 when creating subplots or smaller figures where fonts need to be larger for readability. Recommended: 1.0 for full-page plots, 1.5-2.0 for subplots. """ # Base font sizes - increased for better readability in subplots base_sizes = { 'font.size': 14, 'axes.labelsize': 16, 'axes.titlesize': 18, 'xtick.labelsize': 14, 'ytick.labelsize': 14, 'legend.fontsize': 14, } # Apply scaling plt.rcParams['font.family'] = 'serif' plt.rcParams['font.serif'] = ['Computer Modern Roman', 'DejaVu Serif', 'Times New Roman'] for key, size in base_sizes.items(): plt.rcParams[key] = size * scale_factor # Use LaTeX-style math rendering for any mathematical expressions plt.rcParams['mathtext.fontset'] = 'cm' def _get_scaled_fontsize(base_size, scale_factor=1.5): """ Returns a scaled font size for specific plot elements. Default scale_factor of 1.5 ensures readability in subplots. """ return int(base_size * scale_factor) def _optimize_png_for_heatmap(png_path: str, num_colors: int = 256, resize_factor: float = 1.0) -> None: """ Aggressively optimize a PNG file for minimal size while maintaining acceptable quality. Args: png_path: Path to the PNG file to optimize num_colors: Maximum number of colors in the palette (default 256) resize_factor: Factor to resize image (1.0 = no resize, 0.5 = half size) """ try: from PIL import Image import subprocess import shutil # Open the image img = Image.open(png_path) # Convert to RGB if necessary (removes alpha channel) if img.mode == 'RGBA': background = Image.new('RGB', img.size, (255, 255, 255)) background.paste(img, mask=img.split()[3]) img = background elif img.mode != 'RGB': img = img.convert('RGB') # Optional resize for very large images if resize_factor < 1.0: new_size = (int(img.width * resize_factor), int(img.height * resize_factor)) img = img.resize(new_size, Image.Resampling.NEAREST) # NEAREST preserves sharp edges # More aggressive quantization - reduce to even fewer colors # Most heatmaps look fine with very few colors actual_colors = min(num_colors, 16) # Cap at 16 colors for most heatmaps img_indexed = img.quantize(colors=actual_colors, method=2, dither=0) # Save with maximum compression img_indexed.save(png_path, 'PNG', optimize=True, compress_level=9) # Try external PNG optimizers if available (these can achieve even better compression) try: # Check if pngquant is available - it's excellent for color reduction if shutil.which('pngquant'): subprocess.run([ 'pngquant', '--force', # Overwrite '--skip-if-larger', # Don't replace if it would be larger '--quality=50-90', # Aggressive quality range '--speed=1', # Slowest but best compression str(actual_colors), # Number of colors png_path ], capture_output=True, check=False) # Check if optipng is available - it optimizes compression elif shutil.which('optipng'): subprocess.run([ 'optipng', '-o7', # Maximum optimization '-quiet', png_path ], capture_output=True, check=False) except Exception: pass # External optimizers are optional except Exception as e: print(f" Warning: PNG optimization failed: {e}") def _calculate_optimal_dpi(data_shape: tuple, target_pixels: int = 200000, is_per_model: bool = False) -> int: """ Calculate optimal DPI based on data dimensions to minimize file size. More aggressive settings since quality is confirmed to be good. Args: data_shape: Shape of the heatmap data (height, width) target_pixels: Target number of pixels in the output image is_per_model: Whether this is for per-model heatmaps (use more aggressive compression) Returns: Optimal DPI value """ # For per-model heatmaps, use even more aggressive settings if is_per_model: target_pixels = 100000 # Half the target for per-model # For small matrices, use moderate DPI if data_shape[0] < 50 and data_shape[1] < 50: return 120 if is_per_model else 150 # Reduced from 150/300 # For larger matrices, be more aggressive with DPI reduction figure_width_inches = 8 data_pixels = data_shape[0] * data_shape[1] if data_pixels > 5000: # Lower threshold for large matrices # More aggressive scaling scale_factor = np.sqrt(target_pixels / data_pixels) optimal_dpi = int(80 * scale_factor) if is_per_model else int(100 * scale_factor) # Reduced base return max(60 if is_per_model else 72, min(120 if is_per_model else 150, optimal_dpi)) # Lower bounds return 100 if is_per_model else 120 # Reduced default for medium-sized matrices def _save_heatmap_pdf(fig, output_path: str, data_shape: tuple) -> str: """ Save a heatmap figure to PDF. Due to inherent PDF rendering issues with pixel-perfect data, we recommend using PNG format for heatmaps instead. Args: fig: The matplotlib figure output_path: Path to save the PDF (can be .png or .pdf extension) data_shape: Shape of the heatmap data (height, width) Returns: str: Path to the saved PDF file """ pdf_output_path = os.path.splitext(output_path)[0] + '.pdf' # Set matplotlib to use specific PDF settings import matplotlib as mpl # Save current settings old_interpolation = mpl.rcParams.get('image.interpolation', 'antialiased') old_interpolation_stage = mpl.rcParams.get('image.interpolation_stage', 'data') try: # Force no interpolation at any stage mpl.rcParams['image.interpolation'] = 'none' mpl.rcParams['image.interpolation_stage'] = 'rgba' # Save with very specific settings plt.savefig(pdf_output_path, format='pdf', dpi=1200, # Very high DPI bbox_inches='tight', facecolor='white', edgecolor='none', pad_inches=0.1, # Ensure no transparency which can cause resampling transparent=False, # Try to disable all compression/filtering metadata={'Creator': None, 'Producer': None, 'CreationDate': None}) finally: # Restore settings mpl.rcParams['image.interpolation'] = old_interpolation mpl.rcParams['image.interpolation_stage'] = old_interpolation_stage # Print a warning about PDF limitations print(f" āš ļø Note: PDF format may show artifacts with pixel-based heatmaps.") print(f" For publication-quality heatmaps, consider using the PNG versions.") return pdf_output_path def _shorten_name(name: str) -> str: """Shortens run names for legends, e.g., 'sft_if_magnitude' -> 'if'.""" parts = name.split('_') # Assumes a format like 'sft_TASK_method' if len(parts) > 1: # Handles cases like 'sft_if_ffg' -> 'if' return parts[1] return name def _extract_parameter_info(layer_name: str) -> str: """ Extracts parameter type and layer number from layer name for display. E.g., 'model.layers.15.self_attn.q_proj.weight' -> 'Layer 15 - q_proj' """ import re # Pattern to extract layer number and parameter type pattern = re.compile(r"model\.layers\.(\d+)\..*\.([^.]+)\.weight") match = pattern.match(layer_name) if match: layer_num = match.group(1) param_type = match.group(2) return f"Layer {layer_num} - {param_type}" # Fallback for non-standard layer names return layer_name def load_masks_from_run(run_dir: str) -> Dict[str, Any]: """ Loads the masks.pt file from an experiment output directory. Args: run_dir (str): Path to the experiment output directory. Returns: dict: The dictionary of masks. """ masks_path = os.path.join(run_dir, "masks.pt") if not os.path.exists(masks_path): raise FileNotFoundError(f"Mask file not found at {masks_path}") print(f"Loading masks from {masks_path}...") masks_dict = torch.load(masks_path, map_location='cpu') print(f"āœ“ Loaded {len(masks_dict)} masks.") return masks_dict def calculate_mask_overlap(masks1_dict, masks2_dict): """ Calculates the overlap (Jaccard Index) between two sets of masks. Args: masks1_dict (dict): The first dictionary of masks. masks2_dict (dict): The second dictionary of masks. Returns: dict: A dictionary with overlap statistics. """ print("Calculating mask overlap...") intersection_size = 0 union_size = 0 # Find common parameter names common_params = set(masks1_dict.keys()) & set(masks2_dict.keys()) print(f"Found {len(common_params)} common parameters between the two mask sets.") for name in common_params: mask1 = masks1_dict[name] mask2 = masks2_dict[name] # Ensure masks are boolean mask1 = mask1.bool() mask2 = mask2.bool() intersection = (mask1 & mask2).sum().item() union = (mask1 | mask2).sum().item() intersection_size += intersection union_size += union if union_size == 0: jaccard_index = 0.0 else: jaccard_index = intersection_size / union_size stats = { 'jaccard_index': jaccard_index, 'intersection_size': intersection_size, 'union_size': union_size, 'total_common_params': len(common_params) } print("āœ“ Overlap calculation complete.") return stats def _visualize_grafting_analysis(pretrained_model, finetuned_model, optimizer_v_state, selected_layers, sparsity_ratio, global_threshold, grafting_method): """ Internal function to compute stats for visualization. Adapted from the notebook. """ device = "cuda" if torch.cuda.is_available() else "cpu" pretrained_state = pretrained_model.state_dict() finetuned_state = finetuned_model.state_dict() layer_stats = {} print(f"šŸ” Computing scores for {len(selected_layers)} layers for visualization...") for layer_name in tqdm(selected_layers, desc="Analyzing layers"): if layer_name in pretrained_state: w_t = finetuned_state[layer_name].to(device).to(torch.float32) w_0 = pretrained_state[layer_name].to(device).to(torch.float32) if grafting_method in ('fast_fisher', 'ffg'): if layer_name not in optimizer_v_state: continue v_t = optimizer_v_state[layer_name].to(device).to(torch.float32) scores = (w_t - w_0)**2 * v_t elif grafting_method in ('magnitude', 'mag'): scores = torch.abs(w_t - w_0) elif grafting_method in ('fish_mask', 'fmg'): if layer_name not in optimizer_v_state: continue v_t = optimizer_v_state[layer_name].to(device).to(torch.float32) scores = v_t else: raise ValueError(f"Unsupported grafting method: {grafting_method}") flat_scores = scores.flatten() mask = (scores >= global_threshold).reshape(w_t.shape) kept_params = mask.sum().item() total_params_layer = mask.numel() sparsity_layer = kept_params / total_params_layer layer_stats[layer_name] = { 'scores': scores.cpu(), 'flat_scores': flat_scores.cpu(), 'shape': w_t.shape, 'mask': mask.cpu(), 'kept_params': kept_params, 'sparsity': sparsity_layer, 'mean_score': float(flat_scores.mean()), } return layer_stats def _create_grafting_visualizations(layer_stats, global_threshold, sparsity_ratio, grafting_method, save_path): """ Internal function to create and save the visualization plot. Adapted from the notebook. """ print("šŸŽØ Creating grafting visualizations...") plt.style.use('seaborn-v0_8-whitegrid') # Note: Font scaling should be applied externally if needed sns.set_palette("husl") fig, axes = plt.subplots(2, 3, figsize=(20, 12)) fig.suptitle(f'Grafting Analysis ({grafting_method.replace("_", " ").title()})', y=1.02) layer_names = list(layer_stats.keys()) # 1. Score Distributions for i, layer_name in enumerate(layer_names[:3]): ax = axes[0, i] stats = layer_stats[layer_name] sns.histplot(stats['flat_scores'].numpy(), ax=ax, bins=50, log_scale=True, kde=True) ax.axvline(global_threshold, color='r', linestyle='--', label=f'Global Thr: {global_threshold:.2e}') ax.set_title(f'{layer_name}\nSparsity: {stats["sparsity"]:.2%}') ax.set_xlabel("Importance Score") ax.legend() # 2. Mask Heatmaps for i, layer_name in enumerate(layer_names[3:]): ax = axes[1, i] stats = layer_stats[layer_name] mask = stats['mask'].numpy() if len(mask.shape) == 2 and (mask.shape[0] > 100 or mask.shape[1] > 100): center_i, center_j = mask.shape[0] // 2, mask.shape[1] // 2 mask_sample = mask[center_i-50:center_i+50, center_j-50:center_j+50] title = f'{layer_name}\nSparsity: {stats["sparsity"]:.2%}\n(100x100 center crop)' else: mask_sample = mask title = f'{layer_name}\nSparsity: {stats["sparsity"]:.2%}\n(Full matrix)' hm = sns.heatmap(mask_sample, ax=ax, cbar=False, cmap="viridis") for c in hm.collections: c.set_rasterized(True) ax.set_title(title) ax.set_xticks([]) ax.set_yticks([]) plt.tight_layout(rect=[0, 0, 1, 0.98]) plt.savefig(save_path, dpi=150) # Halved DPI to reduce png size print(f"āœ“ Visualization saved to {save_path}") plt.close() def generate_single_run_visualizations(run_dir): """ Loads artifacts from a single experiment run and generates visualizations. """ print(f"--- Generating visualizations for run: {run_dir} ---") # Load config and stats from the run directory config_path = os.path.join(run_dir, "config.yml") stats_path = os.path.join(run_dir, "statistics.json") with open(config_path, 'r') as f: import yaml config = yaml.safe_load(f) with open(stats_path, 'r') as f: stats = json.load(f) grafting_method = config['grafting_config']['method'] global_threshold = stats['threshold'] sparsity_ratio = config['grafting_config']['sparsity_ratio'] # Load models and optimizer states from .models import load_assets # Local import to avoid circular dependency pretrained_model, finetuned_model, optimizer_v_state, _ = load_assets(config['model_config']) if grafting_method == 'fast_fisher' and optimizer_v_state is None: raise ValueError("Fast Fisher method requires optimizer states, which were not found.") # Select interesting layers for visualization selected_layers = [ 'model.layers.0.self_attn.q_proj.weight', 'model.layers.15.self_attn.q_proj.weight', 'model.layers.31.self_attn.q_proj.weight', 'model.layers.0.mlp.gate_proj.weight', 'model.layers.15.mlp.gate_proj.weight', 'model.layers.31.mlp.gate_proj.weight', ] # Get layer-wise statistics layer_stats = _visualize_grafting_analysis( pretrained_model, finetuned_model, optimizer_v_state, selected_layers, sparsity_ratio, global_threshold, grafting_method ) # Create and save the plot save_path = os.path.join(run_dir, "grafting_analysis.png") _create_grafting_visualizations( layer_stats, global_threshold, sparsity_ratio, grafting_method, save_path ) def _calculate_layerwise_jaccard(masks1_dict, masks2_dict): """ Calculates layer-wise Jaccard Index. """ layer_jaccard_scores = {} common_params = set(masks1_dict.keys()) & set(masks2_dict.keys()) for name in common_params: mask1 = masks1_dict[name].bool() mask2 = masks2_dict[name].bool() intersection = (mask1 & mask2).sum().item() union = (mask1 | mask2).sum().item() jaccard = intersection / union if union > 0 else 0 layer_jaccard_scores[name] = jaccard return layer_jaccard_scores def _create_jaccard_barchart(layer_jaccard_scores, output_path, names, font_scale=1.0): """ Creates and saves a bar chart of layer-wise Jaccard scores. """ # Sort layers by Jaccard index for better visualization sorted_layers = sorted(layer_jaccard_scores.items(), key=lambda item: item[1], reverse=True) display_data = sorted_layers title = f"Layer-wise Jaccard Scores ({names[0]} vs {names[1]})" layer_names = [item[0] for item in display_data] jaccard_values = [item[1] for item in display_data] plt.style.use('seaborn-v0_8-whitegrid') # Set publication fonts with scaling after style change _set_publication_fonts(scale_factor=font_scale) # Dynamically adjust figure height based on the number of layers fig, ax = plt.subplots(figsize=(12, max(12, len(jaccard_values) * 0.2))) bars = ax.barh(layer_names, jaccard_values, color=sns.color_palette("viridis", len(jaccard_values))) ax.set_xlabel("Jaccard Index (Overlap)") ax.set_title(title) ax.set_xlim(0, 1) ax.invert_yaxis() # Display highest scores at the top ax.tick_params(axis='both', which='major', labelsize=plt.rcParams['xtick.labelsize']) # Add value labels to the bars for bar in bars: width = bar.get_width() ax.text(width + 0.01, bar.get_y() + bar.get_height()/2, f'{width:.2f}', ha='left', va='center', fontsize=plt.rcParams['font.size']) plt.tight_layout() plt.savefig(output_path, dpi=300) pdf_output_path = os.path.splitext(output_path)[0] + '.pdf' plt.savefig(pdf_output_path, format='pdf') print(f"āœ“ Layer-wise overlap chart saved to {output_path} and {pdf_output_path}") plt.close() def _create_comparison_heatmap(masks1_dict: Dict[str, Any], masks2_dict: Dict[str, Any], layer_name: str, output_path: str, names: List[str], font_scale: float = 1.0): """ Creates and saves a comparison heatmap for a specific layer. """ _set_publication_fonts(scale_factor=font_scale) mask1 = masks1_dict[layer_name].bool() # Gracefully skip non-2D tensors, as they cannot be visualized as heatmaps. if len(mask1.shape) != 2: return mask2 = masks2_dict[layer_name].bool() total_params = mask1.numel() # Calculate counts for each category kept_1_only = (mask1 & ~mask2).sum().item() kept_2_only = (~mask1 & mask2).sum().item() intersection = (mask1 & mask2).sum().item() pruned_both = (~mask1 & ~mask2).sum().item() # Create a numerical map for visualization: # 0: Pruned in both # 1: Kept only in mask 1 # 2: Kept only in mask 2 # 3: Kept in both (intersection) comparison_map = torch.zeros_like(mask1, dtype=torch.int8) comparison_map[mask1 & ~mask2] = 1 comparison_map[~mask1 & mask2] = 2 comparison_map[mask1 & mask2] = 3 comparison_map = comparison_map.numpy() # Downsample if the matrix is too large to visualize if comparison_map.shape[0] > 256 or comparison_map.shape[1] > 256: # Simple center crop for large matrices center_i, center_j = comparison_map.shape[0] // 2, comparison_map.shape[1] // 2 map_sample = comparison_map[center_i-128:center_i+128, center_j-128:center_j+128] # title = f'Mask Comparison: {layer_name}\\n(256x256 Center Crop)' # Title removed else: map_sample = comparison_map # title = f'Mask Comparison: {layer_name}' # Title removed # Set publication fonts with scaling _set_publication_fonts(scale_factor=font_scale) fig, ax = plt.subplots(figsize=(8, 8)) # Define custom colormap and labels cmap = mcolors.ListedColormap(['#e0e0e0', '#6495ED', '#DC143C', '#9932CC']) # Grey, Blue, Red, Purple bounds = [-0.5, 0.5, 1.5, 2.5, 3.5] norm = mcolors.BoundaryNorm(bounds, cmap.N) # Ensure sharp pixel boundaries in PDF by setting appropriate DPI # Calculate DPI to ensure each data pixel maps to at least 2-3 screen pixels fig_width_inches = fig.get_figwidth() data_width_pixels = map_sample.shape[1] dpi_for_data = max(300, (data_width_pixels * 3) / fig_width_inches) cax = ax.imshow(map_sample, cmap=cmap, norm=norm, interpolation='nearest', aspect='auto', rasterized=True) # Create a legend with percentage breakdowns short_names = [_shorten_name(n) for n in names] patches = [ mpatches.Patch(color='#e0e0e0', label=f'Pruned in Both ({pruned_both/total_params:.2%})'), mpatches.Patch(color='#6495ED', label=f'Kept in {short_names[0]} Only ({kept_1_only/total_params:.2%})'), mpatches.Patch(color='#DC143C', label=f'Kept in {short_names[1]} Only ({kept_2_only/total_params:.2%})'), mpatches.Patch(color='#9932CC', label=f'Kept in Both (Intersection) ({intersection/total_params:.2%})') ] ax.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0., fontsize=plt.rcParams['legend.fontsize']) # Add title with parameter info param_info = _extract_parameter_info(layer_name) ax.set_title(param_info, pad=20) ax.set_xticks([]) ax.set_yticks([]) # Calculate optimal DPI based on data size optimal_dpi = _calculate_optimal_dpi(map_sample.shape) # Save PNG with optimized settings plt.savefig(output_path, dpi=optimal_dpi, bbox_inches='tight') # For very large heatmaps, also resize the image resize_factor = 1.0 if map_sample.shape[0] > 512 or map_sample.shape[1] > 512: resize_factor = 0.75 # Reduce to 75% for very large heatmaps # Optimize the PNG file (convert to indexed color, compress) # Heatmaps with 4 categories need very few colors _optimize_png_for_heatmap(output_path, num_colors=8, resize_factor=resize_factor) # Get file size for reporting import os file_size_mb = os.path.getsize(output_path) / (1024 * 1024) print(f"āœ“ Comparison heatmap for {layer_name} saved to {output_path} ({file_size_mb:.2f} MB)") plt.close() def _create_rgb_heatmap(masks: List[Dict[str, Any]], layer_name: str, output_path: str, names: List[str], font_scale: float = 1.0): """ Creates and saves a 3-way RGB heatmap for a specific layer. """ mask1 = masks[0][layer_name].bool() # Gracefully skip non-2D tensors if len(mask1.shape) != 2: return mask2, mask3 = masks[1][layer_name].bool(), masks[2][layer_name].bool() total_params = mask1.numel() # Calculate counts for each category intersect_1_only = (mask1 & ~mask2 & ~mask3).sum().item() intersect_2_only = (~mask1 & mask2 & ~mask3).sum().item() intersect_3_only = (~mask1 & ~mask2 & mask3).sum().item() intersect_1_2 = (mask1 & mask2 & ~mask3).sum().item() intersect_1_3 = (mask1 & ~mask2 & mask3).sum().item() intersect_2_3 = (~mask1 & mask2 & mask3).sum().item() intersect_1_2_3 = (mask1 & mask2 & mask3).sum().item() pruned_all = (~mask1 & ~mask2 & ~mask3).sum().item() # Create an RGB image tensor rgb_image = torch.stack([mask1, mask2, mask3], dim=-1).numpy().astype(float) if rgb_image.shape[0] > 256 or rgb_image.shape[1] > 256: center_i, center_j = rgb_image.shape[0] // 2, rgb_image.shape[1] // 2 map_sample = rgb_image[center_i-128:center_i+128, center_j-128:center_j+128, :] # title = f'3-Way Mask Comparison: {layer_name}\\n(256x256 Center Crop)' # Title removed else: map_sample = rgb_image # title = f'3-Way Mask Comparison: {layer_name}' # Title removed # Set publication fonts with scaling - must be done after any style changes _set_publication_fonts(scale_factor=font_scale) fig, ax = plt.subplots(figsize=(8, 8)) # Ensure sharp pixel boundaries in PDF ax.imshow(map_sample, interpolation='nearest', aspect='auto', rasterized=True) # Add title with parameter info param_info = _extract_parameter_info(layer_name) ax.set_title(param_info, pad=20) ax.set_xticks([]) ax.set_yticks([]) # Create a custom legend for RGB channels with percentage breakdowns short_names = [_shorten_name(n) for n in names] patches = [ mpatches.Patch(color='red', label=f'{short_names[0]} Only ({intersect_1_only/total_params:.2%})'), mpatches.Patch(color='green', label=f'{short_names[1]} Only ({intersect_2_only/total_params:.2%})'), mpatches.Patch(color='blue', label=f'{short_names[2]} Only ({intersect_3_only/total_params:.2%})'), mpatches.Patch(color='yellow', label=f'({short_names[0]})+({short_names[1]}) ({intersect_1_2/total_params:.2%})'), mpatches.Patch(color='cyan', label=f'({short_names[1]})+({short_names[2]}) ({intersect_2_3/total_params:.2%})'), mpatches.Patch(color='magenta', label=f'({short_names[0]})+({short_names[2]}) ({intersect_1_3/total_params:.2%})'), mpatches.Patch(color='white', label=f'All Three ({intersect_1_2_3/total_params:.2%})'), mpatches.Patch(color='black', label=f'Pruned in All ({pruned_all/total_params:.2%})') ] ax.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0., fontsize=plt.rcParams['legend.fontsize']) # plt.tight_layout(rect=(0, 0, 0.85, 1)) # Calculate optimal DPI based on data size optimal_dpi = _calculate_optimal_dpi(map_sample.shape) # Save PNG with optimized settings plt.savefig(output_path, dpi=optimal_dpi, bbox_inches='tight') # Optimize the PNG file # RGB heatmaps need more colors but can still be reduced _optimize_png_for_heatmap(output_path, num_colors=32) # Aggressive reduction # Get file size for reporting import os file_size_mb = os.path.getsize(output_path) / (1024 * 1024) print(f"āœ“ 3-way RGB heatmap for {layer_name} saved to {output_path} ({file_size_mb:.2f} MB)") plt.close() def _create_sparsity_distribution_plot(mask: torch.Tensor, layer_name: str, output_path: str, font_scale: float = 1.0): """ Generates and saves a visualization of row and column sparsity distributions for a given layer mask. """ if not isinstance(mask, torch.Tensor): print(f"Skipping sparsity distribution for {layer_name}: mask is not a tensor.") return if mask.dim() != 2: return # Silently skip for non-2D tensors like biases # Ensure mask is on CPU and of a floating point type for mean calculation mask = mask.cpu().float() # Calculate sparsity (fraction of zeros) for each row and column # A value of 1.0 means fully sparse (all zeros) row_sparsity = 1.0 - mask.mean(dim=1) col_sparsity = 1.0 - mask.mean(dim=0) # Don't create plots for vectors that were flattened into a 2D tensor of shape (N, 1) or (1, N) if row_sparsity.numel() <= 1 or col_sparsity.numel() <= 1: return # Create plot plt.style.use('seaborn-v0_8-whitegrid') # Set publication fonts with scaling after style change _set_publication_fonts(scale_factor=font_scale) fig, axes = plt.subplots(2, 1, figsize=(12, 10), sharex=True) # Add title with parameter info param_info = _extract_parameter_info(layer_name) fig.suptitle(f'Structural Sparsity Distribution: {param_info}', y=0.99) # Plot row sparsity distribution sns.histplot(row_sparsity.numpy(), ax=axes[0], bins=50, kde=True) axes[0].set_title(f'Row-wise Sparsity (Avg: {row_sparsity.mean():.2%})') axes[0].set_ylabel('Number of Rows') axes[0].tick_params(axis='both', which='major', labelsize=plt.rcParams['xtick.labelsize']) axes[0].grid(True, which='both', linestyle='--', linewidth=0.5) # Plot column sparsity distribution sns.histplot(col_sparsity.numpy(), ax=axes[1], bins=50, kde=True) axes[1].set_title(f'Column-wise Sparsity (Avg: {col_sparsity.mean():.2%})') # axes[1].set_xlabel('Sparsity Level (0 = Dense, 1 = Fully Pruned)') axes[1].set_ylabel('Number of Columns') axes[1].tick_params(axis='both', which='major', labelsize=plt.rcParams['xtick.labelsize']) axes[1].grid(True, which='both', linestyle='--', linewidth=0.5) plt.tight_layout(rect=[0, 0, 1, 0.96]) # Save PNG with optimization at lower DPI plt.savefig(output_path, dpi=120, bbox_inches='tight') # Optimize the PNG file # Distribution plots can work with very few colors _optimize_png_for_heatmap(output_path, num_colors=16) # Still save PDF for vector graphics (good for line plots) pdf_output_path = os.path.splitext(output_path)[0] + '.pdf' plt.savefig(pdf_output_path, format='pdf') plt.close() def _create_n_way_count_heatmap(masks_list: List[Dict[str, Any]], layer_name: str, output_path: str, names: List[str], font_scale: float = 1.0) -> None: """ Creates and saves an N-way (N>=4) count heatmap for a specific layer. Each pixel value indicates how many runs (0..N) kept that parameter (mask==True). """ _set_publication_fonts(scale_factor=font_scale) num_models = len(masks_list) if num_models < 4: return # Use the first mask to infer shape and validate dimensionality mask0 = masks_list[0][layer_name].bool() if len(mask0.shape) != 2: return # Stack masks and compute per-parameter keep counts stacked = torch.stack([m[layer_name].bool() for m in masks_list], dim=0) keep_counts = stacked.sum(dim=0).to(torch.int16) # values in [0, num_models] total_params = keep_counts.numel() # Prepare a sampled map for visualization (center crop if large) keep_counts_np = keep_counts.numpy() if keep_counts_np.shape[0] > 256 or keep_counts_np.shape[1] > 256: ci, cj = keep_counts_np.shape[0] // 2, keep_counts_np.shape[1] // 2 map_sample = keep_counts_np[ci-128:ci+128, cj-128:cj+128] else: map_sample = keep_counts_np # Set publication fonts with scaling _set_publication_fonts(scale_factor=font_scale) fig, ax = plt.subplots(figsize=(8, 8)) # Discrete colormap with (num_models+1) levels from 0..num_models discrete_colors = plt.cm.viridis(np.linspace(0.05, 0.95, num_models + 1)) cmap = mcolors.ListedColormap(discrete_colors) bounds = np.arange(-0.5, num_models + 1.5, 1) norm = mcolors.BoundaryNorm(bounds, cmap.N) # ax.set_rasterization_zorder(1) ax.imshow(map_sample, cmap=cmap, norm=norm, interpolation='nearest', zorder=1, rasterized=True) # Add title with parameter info param_info = _extract_parameter_info(layer_name) ax.set_title(param_info, pad=20) ax.set_xticks([]) ax.set_yticks([]) # Build legend entries summarizing global proportions (computed on full map) counts, _ = np.histogram(keep_counts_np, bins=np.arange(-0.5, num_models + 1.5, 1)) short_names = [_shorten_name(n) for n in names] summary_patches = [] for k in range(num_models + 1): frac = counts[k] / total_params if total_params > 0 else 0.0 label = 'Pruned in All' if k == 0 else f'Kept in {k} of {num_models}' summary_patches.append(mpatches.Patch(color=cmap(k), label=f'{label} ({frac:.2%})')) ax.legend(handles=summary_patches, bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0., fontsize=plt.rcParams['legend.fontsize']) # Calculate optimal DPI based on data size optimal_dpi = _calculate_optimal_dpi(map_sample.shape) # Save PNG with optimized settings plt.savefig(output_path, dpi=optimal_dpi, bbox_inches='tight') # Optimize the PNG file # Count heatmaps only need as many colors as categories _optimize_png_for_heatmap(output_path, num_colors=min(8, num_models + 1)) # Get file size for reporting import os file_size_mb = os.path.getsize(output_path) / (1024 * 1024) print(f"āœ“ {num_models}-way count heatmap for {layer_name} saved to {output_path} ({file_size_mb:.2f} MB)") plt.close() def _create_n_way_subset_heatmap(masks_list: List[Dict[str, Any]], layer_name: str, output_path: str, names: List[str], legend_style: Optional[str] = 'auto', legend_max_rows: Optional[int] = None, font_scale: float = 1.0) -> None: """ Creates and saves an N-way (N>=4) subset-categorical heatmap for a specific layer. Each pixel is assigned to one of 2^N categories (bitmask across experts). Legend behavior is controlled via legend_style: - 'auto' : UpSet-style legend for N>=4, regular list otherwise - 'upset' : UpSet-style legend (dot-matrix + proportion bars) - 'list' : Original 2^N textual legend entries - 'none' : No legend """ _set_publication_fonts(scale_factor=font_scale) num_models = len(masks_list) if num_models < 4: return # Validate dimensionality using the first mask mask0 = masks_list[0][layer_name].bool() if len(mask0.shape) != 2: return # Build bitmask map where each bit i indicates mask kept in expert i bitmask = torch.zeros_like(mask0, dtype=torch.int32) for i in range(num_models): m_i = masks_list[i][layer_name].bool() bitmask |= (m_i.to(torch.int32) << i) # Optional center crop for visualization readability bitmask_np = bitmask.numpy() if bitmask_np.shape[0] > 256 or bitmask_np.shape[1] > 256: ci, cj = bitmask_np.shape[0] // 2, bitmask_np.shape[1] // 2 map_sample = bitmask_np[ci-128:ci+128, cj-128:cj+128] else: map_sample = bitmask_np # Build discrete palette over all 2^N categories. # Strategy: assign base colors to singles, blend RGB averages for combinations, black for none. base_colors_hex = ['#FF0000', '#00AA00', '#0000FF', '#FF8C00', '#800080', '#00CED1', '#FFD700', '#8B4513'] if num_models > len(base_colors_hex): extra = num_models - len(base_colors_hex) for k in range(extra): hue = (k + 1) / (extra + 1) col = plt.cm.hsv(hue) base_colors_hex.append(mcolors.to_hex(col)) base_rgbs = [np.array(mcolors.to_rgb(h)) for h in base_colors_hex[:num_models]] num_categories = 1 << num_models colors = [] for cat in range(num_categories): if cat == 0: colors.append('#000000') # pruned in all continue # If all bits are set, this is the "kept in all" category if cat == (num_categories - 1) and num_models > 1: colors.append('#FFFFFF') # White for "Kept in All" continue indices = [i for i in range(num_models) if (cat >> i) & 1] mix = np.mean([base_rgbs[i] for i in indices], axis=0) mix = np.clip(mix ** 0.9, 0, 1) # Tone down saturation colors.append(mcolors.to_hex(mix)) cmap = mcolors.ListedColormap(colors) # Global distribution across all categories (on full-res bitmask) full_counts, _ = np.histogram(bitmask_np, bins=np.arange(-0.5, num_categories + 0.5, 1)) total_params = bitmask_np.size if bitmask_np.size > 0 else 1 short_names = [_shorten_name(n) for n in names] # Decide legend style style = (legend_style or 'auto').lower() if style == 'auto': style = 'upset' # Create figure/axes if style == 'upset': # Wider canvas for heatmap + legend panel fig = plt.figure(figsize=(12, 8)) from matplotlib import gridspec as _gs gs = _gs.GridSpec(1, 2, width_ratios=[1.0, 1.25], wspace=0.3) ax = fig.add_subplot(gs[0]) ax_leg = fig.add_subplot(gs[1]) else: fig, ax = plt.subplots(figsize=(8, 8)) ax_leg = None # Heatmap # ax.set_rasterization_zorder(1) ax.imshow(map_sample.astype(float), cmap=cmap, vmin=0, vmax=num_categories - 1, interpolation='nearest', zorder=1, rasterized=True) # Add title with parameter info param_info = _extract_parameter_info(layer_name) ax.set_title(param_info, pad=20) ax.set_xticks([]) ax.set_yticks([]) # Legend rendering if style == 'list': patches = [] for cat in range(num_categories): frac = full_counts[cat] / total_params if cat == 0: label = f'Pruned in All ({frac:.2%})' patches.append(mpatches.Patch(color=colors[cat], label=label)) elif cat == num_categories - 1 and num_models > 1: label = f'Kept in All ({frac:.2%})' # Add black border to white patch so it's visible against white background patches.append(mpatches.Patch(color=colors[cat], label=label, edgecolor='black', linewidth=0.75)) else: included = [short_names[i] for i in range(num_models) if (cat >> i) & 1] label = "+".join(included) + f" ({frac:.2%})" patches.append(mpatches.Patch(color=colors[cat], label=label)) ax.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0., fontsize=plt.rcParams['legend.fontsize']) elif style == 'upset' and ax_leg is not None: # Build rows (exclude the all-pruned 0 category) cats = [cat for cat in range(1, num_categories) if full_counts[cat] > 0] # Sort by prevalence cats.sort(key=lambda c: full_counts[c], reverse=True) if legend_max_rows is not None and legend_max_rows > 0: cats = cats[:legend_max_rows] num_rows = len(cats) y_positions = np.arange(num_rows)[::-1] # Dot-matrix for membership across experts for r, cat in enumerate(cats): y = y_positions[r] for i in range(num_models): on = ((cat >> i) & 1) == 1 ax_leg.scatter(i, y, s=36, c='k' if on else 'white', edgecolors='k', linewidths=0.75, zorder=3) # Bars for proportions x_bar0 = num_models + 0.8 max_bar_width = 2.2 # axis units for r, cat in enumerate(cats): y = y_positions[r] frac = full_counts[cat] / total_params w = max_bar_width * frac rect = mpatches.Rectangle((x_bar0, y - 0.3), w, 0.6, color=colors[cat], zorder=2) ax_leg.add_patch(rect) ax_leg.text(x_bar0 + w + 0.05, y, f"{frac:.2%}", va='center', fontsize=plt.rcParams['font.size']) # Axes styling ax_leg.set_ylim(-0.5, num_rows - 0.5) ax_leg.set_xlim(-0.5, x_bar0 + max_bar_width + 1.1) ax_leg.set_yticks([]) ax_leg.set_xticks(list(range(num_models)) + [x_bar0]) ax_leg.set_xticklabels(short_names + [' ']) ax_leg.tick_params(axis='x', labelrotation=45) ax_leg.axvline(x=x_bar0 - 0.4, color='gray', linewidth=1) ax_leg.set_title('Intersections (UpSet-style)', pad=10) # else: 'none' → no legend # Calculate optimal DPI based on data size optimal_dpi = _calculate_optimal_dpi(map_sample.shape) # Save PNG with optimized settings plt.savefig(output_path, dpi=optimal_dpi, bbox_inches='tight') # Optimize the PNG file # Subset heatmaps can work with fewer colors in practice max_colors = min(32, 1 << num_models) # Much more aggressive _optimize_png_for_heatmap(output_path, num_colors=max_colors) # Get file size for reporting import os file_size_mb = os.path.getsize(output_path) / (1024 * 1024) print(f"āœ“ {num_models}-way subset heatmap for {layer_name} saved to {output_path} ({file_size_mb:.2f} MB)") plt.close() def _load_preconditioner_map(file_path: str) -> Dict[str, torch.Tensor]: """ Loads a safetensors file, attempting to download from HF hub if not found locally. """ if not os.path.exists(file_path): try: # Assumes HF path is formatted like "namespace/repo_name/path/within/repo.safetensors" parts = file_path.split('/') if len(parts) < 3: raise ValueError(f"Invalid Hugging Face path format: '{file_path}'") repo_id = f"{parts[0]}/{parts[1]}" filename = "/".join(parts[2:]) print(f" -> Preconditioner '{file_path}' not found locally.") print(f" Attempting download from repo='{repo_id}', filename='{filename}'...") resolved_path = hf_hub_download(repo_id=repo_id, filename=filename) file_path = resolved_path print(f" Successfully downloaded to: {file_path}") except Exception as e: print(f" -> ERROR: Failed to download from Hugging Face Hub: {e}") raise FileNotFoundError(f"Could not find or download preconditioner file: {file_path}") from e tensors: Dict[str, torch.Tensor] = {} with safe_open(file_path, framework="pt", device="cpu") as f: for key in f.keys(): tensors[key] = f.get_tensor(key) return tensors def _map_layer_to_precond_key(layer_name: str, precond_map: Dict[str, torch.Tensor]) -> Optional[str]: """ Try mapping a mask layer name like '...weight' to a preconditioner key like '...exp_avg_sq'. Handles presence/absence of 'model.' prefix. """ candidates: List[str] = [layer_name] # Check for an exact match first if layer_name.endswith('.weight'): candidates.append(layer_name[:-len('.weight')] + '.exp_avg_sq') else: candidates.append(layer_name + '.exp_avg_sq') # Toggle leading 'model.' prefix more: List[str] = [] for c in candidates: if c.startswith('model.'): more.append(c[len('model.'):]) else: more.append('model.' + c) candidates.extend(more) for key in candidates: if key in precond_map: return key return None def _create_n_way_winner_tiebreak_heatmap( masks_list: List[Dict[str, Any]], preconds_list: List[Dict[str, torch.Tensor]], layer_name: str, output_path: str, names: List[str], threshold: float, font_scale: float = 1.0, ) -> None: """ For each parameter element, choose a single winner among N experts using second moments to break ties when multiple masks keep the element: - If exactly one mask keeps the element → assign to that expert - If >=2 keep it → compute (max/min) of exp_avg_sq over kept experts; if >= threshold → assign to argmax expert; else assign to a fallback category - If none keep it → assign to a fallback category """ _set_publication_fonts(scale_factor=font_scale) num_models = len(masks_list) if num_models != len(preconds_list) or num_models < 2: return # Build mask stack and resolve per-model preconditioner tensors for this layer mask0 = masks_list[0][layer_name].bool() if mask0.dim() != 2: return H, W = mask0.shape masks_stack = torch.stack([masks_list[i][layer_name].bool() for i in range(num_models)], dim=0) # [N,H,W] # Resolve preconditioner tensors per model, mapped by key pre_stack_list: List[torch.Tensor] = [] for i in range(num_models): key = _map_layer_to_precond_key(layer_name, preconds_list[i]) if key is None: return # Cannot map this layer for all models; skip t = preconds_list[i][key] if t.dim() != 2 or t.shape != (H, W): return pre_stack_list.append(t.to(torch.float32)) pre_stack = torch.stack(pre_stack_list, dim=0) # [N,H,W] # Compute candidate counts per position candidate_counts = masks_stack.sum(dim=0) # [H,W] # Prepare masked preconditioners for max/min over candidates neg_inf = torch.tensor(float('-inf'), dtype=pre_stack.dtype) pos_inf = torch.tensor(float('inf'), dtype=pre_stack.dtype) pre_for_max = torch.where(masks_stack, pre_stack, neg_inf) pre_for_min = torch.where(masks_stack, pre_stack, pos_inf) max_vals, max_idx = torch.max(pre_for_max, dim=0) # [H,W] min_vals, _ = torch.min(pre_for_min, dim=0) # [H,W] # Define indices for new categories pruned_by_all_idx = num_models tie_idx = num_models + 1 # Winner map starts uninitialized winner = torch.full((H, W), -1, dtype=torch.int64) # Use -1 as a sentinel # Case 1: Pruned by all pruned_mask = (candidate_counts == 0) winner[pruned_mask] = pruned_by_all_idx # Case 2: Exactly one candidate (clear winner) single_mask = (candidate_counts == 1) winner[single_mask] = max_idx[single_mask] # Case 3: Two or more candidates (needs tie-breaking) multi_mask = (candidate_counts >= 2) # Use a small epsilon to avoid division by zero eps = torch.tensor(1e-28, dtype=pre_stack.dtype) ratio = max_vals / (min_vals + eps) # Sub-case 3a: Strong dominance, a clear winner exists strong_dom_mask = (ratio >= threshold) & multi_mask winner[strong_dom_mask] = max_idx[strong_dom_mask] # Sub-case 3b: Weak dominance, it's a tie tie_mask = (ratio < threshold) & multi_mask winner[tie_mask] = tie_idx # Sanity check if all pixels have been assigned if (winner == -1).any(): print(f"Warning: some pixels in layer {layer_name} were not assigned a category.") # Optional center crop for visualization display = winner if H > 256 or W > 256: ci, cj = H // 2, W // 2 display = display[ci-128:ci+128, cj-128:cj+128] # Build discrete colormap: one color per model + two for fallback categories if num_models <= 10: model_colors = plt.cm.get_cmap('tab10', num_models).colors elif num_models <= 12: model_colors = plt.cm.get_cmap('Paired', num_models).colors elif num_models <= 20: model_colors = plt.cm.get_cmap('tab20', num_models).colors else: model_colors = plt.cm.get_cmap('viridis', num_models).colors colors = [mcolors.to_hex(c) for c in model_colors] colors.append('#000000') # Black for "Pruned by All" colors.append('#808080') # Gray for "Tie" cmap = mcolors.ListedColormap(colors) bounds = [i - 0.5 for i in range(num_models + 3)] norm = mcolors.BoundaryNorm(bounds, cmap.N) # Set publication fonts with scaling _set_publication_fonts(scale_factor=font_scale) fig, ax = plt.subplots(figsize=(8, 8)) im = ax.imshow(display.numpy(), cmap=cmap, norm=norm, interpolation='nearest', zorder=1, rasterized=True) # Add title with parameter info param_info = _extract_parameter_info(layer_name) ax.set_title(param_info, pad=20) ax.set_xticks([]) ax.set_yticks([]) # Colorbar with model names + fallback categories ticks = list(range(num_models + 2)) cbar = plt.colorbar(im, ticks=ticks, spacing='proportional') labels = names[:] + ["Pruned by All", "Tie"] cbar.set_ticklabels(labels) cbar.ax.tick_params(labelsize=plt.rcParams['legend.fontsize']) # Set colorbar font size # Calculate optimal DPI based on data size optimal_dpi = _calculate_optimal_dpi(display.shape) # Save PNG with optimized settings plt.savefig(output_path, dpi=optimal_dpi, bbox_inches='tight') # Optimize the PNG file # Winner heatmaps only need exact number of categories _optimize_png_for_heatmap(output_path, num_colors=num_models + 2) # Get file size for reporting import os file_size_mb = os.path.getsize(output_path) / (1024 * 1024) print(f"āœ“ Winner tie-break heatmap for {layer_name} saved to {output_path} ({file_size_mb:.2f} MB)") plt.close() def generate_comparison_visualizations( dirs: List[str], names: List[str], output_dir: str, precond_paths: Optional[List[str]] = None, winner_tie_break_threshold: Optional[float] = None, legend_style: str = 'auto', legend_max_rows: int = 16, font_scaling: Optional[Dict[str, float]] = None, plots_to_generate: Optional[Dict[str, bool]] = None, ): """ Generates and saves visualizations comparing masks from two or three runs. """ num_dirs = len(dirs) print(f"--- Generating {num_dirs}-way comparison visualizations for: {', '.join(names)} ---") # Get font scaling factors if font_scaling is None: font_scaling = {} default_scale = font_scaling.get('default', 1.0) if plots_to_generate is None: plots_to_generate = {} # 1. Load masks masks = [load_masks_from_run(d) for d in dirs] # Find common layers across all runs if not masks: print("No masks loaded, skipping comparison.") return common_layers = list(set.intersection(*(set(m.keys()) for m in masks))) # 2. Generate Visualizations (Barchart for 2, Heatmaps for 2 or 3) if num_dirs == 2 and plots_to_generate.get('n_way_comparison_plots', True): print("\nšŸ“Š Calculating layer-wise Jaccard overlap...") layer_jaccard = _calculate_layerwise_jaccard(masks[0], masks[1]) print("\nšŸŽØ Generating comparison bar chart...") barchart_path = os.path.join(output_dir, "layerwise_jaccard_comparison.png") jaccard_scale = font_scaling.get('jaccard_barchart', default_scale) _create_jaccard_barchart(layer_jaccard, barchart_path, names, font_scale=jaccard_scale) # 3. Generate Heatmaps for all common layers if plots_to_generate.get('n_way_comparison_plots', True): print(f"\nšŸŽØ Generating heatmaps for all {len(common_layers)} common layers...") if num_dirs == 2: # Create a dedicated subdirectory for the numerous heatmap files heatmap_dir = os.path.join(output_dir, "heatmaps_2way") os.makedirs(heatmap_dir, exist_ok=True) print(f"Saving 2-way heatmaps to: {heatmap_dir}") comp_scale = font_scaling.get('comparison_heatmap', default_scale) for layer_name in tqdm(common_layers, desc="Generating 2-way heatmaps"): heatmap_path = os.path.join(heatmap_dir, f"comparison_heatmap_{layer_name}.png") _create_comparison_heatmap(masks[0], masks[1], layer_name, heatmap_path, names, font_scale=comp_scale) elif num_dirs == 3: # Create a dedicated subdirectory for the numerous heatmap files heatmap_dir = os.path.join(output_dir, "heatmaps_3way_rgb") os.makedirs(heatmap_dir, exist_ok=True) print(f"Saving 3-way RGB heatmaps to: {heatmap_dir}") rgb_scale = font_scaling.get('rgb_heatmap', default_scale) for layer_name in tqdm(common_layers, desc="Generating 3-way heatmaps"): heatmap_path = os.path.join(heatmap_dir, f"rgb_heatmap_{layer_name}.png") _create_rgb_heatmap(masks, layer_name, heatmap_path, names, font_scale=rgb_scale) else: # Fallback for N >= 4: subset-based heatmaps indicating exact expert combinations (2^N categories) heatmap_dir = os.path.join(output_dir, f"heatmaps_{num_dirs}way_subsets") os.makedirs(heatmap_dir, exist_ok=True) print(f"Saving {num_dirs}-way subset heatmaps to: {heatmap_dir}") subset_scale = font_scaling.get('subset_heatmap', default_scale) for layer_name in tqdm(common_layers, desc=f"Generating {num_dirs}-way subset heatmaps"): heatmap_path = os.path.join(heatmap_dir, f"subsets_heatmap_{layer_name}.png") _create_n_way_subset_heatmap(masks, layer_name, heatmap_path, names, legend_style=legend_style, legend_max_rows=legend_max_rows, font_scale=subset_scale) # Optional: generate winner tie-break heatmaps using second moments if precond_paths is not None and len(precond_paths) == len(dirs) and (winner_tie_break_threshold is not None): if plots_to_generate.get('winner_tiebreak_heatmap', True): try: precond_maps = [_load_preconditioner_map(p) for p in precond_paths] except Exception as e: print(f"Warning: failed to load preconditioners: {e}. Skipping winner tie-break heatmaps.") precond_maps = None if precond_maps is not None: winner_dir = os.path.join(output_dir, f"heatmaps_{len(dirs)}way_winner_tiebreak") os.makedirs(winner_dir, exist_ok=True) print(f"Saving winner tie-break heatmaps to: {winner_dir}") winner_scale = font_scaling.get('winner_tiebreak_heatmap', default_scale) for layer_name in tqdm(common_layers, desc="Generating tie-break winner heatmaps"): out_path = os.path.join(winner_dir, f"winner_tiebreak_{layer_name}.png") try: _create_n_way_winner_tiebreak_heatmap(masks, precond_maps, layer_name, out_path, names, threshold=float(winner_tie_break_threshold), font_scale=winner_scale) except Exception as e: print(f"Skipping winner heatmap for {layer_name}: {e}") print("\nComparison visualizations finished for this set.") # --- Preconditioner Comparison Functions --- def _save_precond_heatmap_optimized(fig, base_path: str, data_shape: tuple, plot_format: str = "png", compression_level: int = 9, is_per_model: bool = False) -> str: """ Save preconditioner heatmap with optimal compression strategy. Args: fig: Matplotlib figure base_path: Base path without extension data_shape: Shape of the data being visualized plot_format: Desired format (png, jpg, pdf) compression_level: PNG compression level (0-9, 9 is max compression) is_per_model: Whether this is a per-model heatmap (uses more aggressive compression) Returns: Path to saved file """ # Calculate optimal DPI based on data size optimal_dpi = _calculate_optimal_dpi(data_shape, is_per_model=is_per_model) # Estimate file size based on data dimensions and DPI estimated_pixels = (data_shape[0] * data_shape[1] * optimal_dpi**2) / (100**2) # Choose format based on estimated size if plot_format == "auto": if estimated_pixels > 5_000_000: # > 5MP plot_format = "jpg" # Use JPEG for very large images else: plot_format = "png" output_path = f"{base_path}.{plot_format}" if plot_format == "png": # Use PIL for better PNG compression try: # Save to buffer first import io from PIL import Image buf = io.BytesIO() plt.savefig(buf, format='png', dpi=optimal_dpi, bbox_inches='tight', pad_inches=0.05, facecolor='white') buf.seek(0) # Open with PIL and save with optimization img = Image.open(buf) img.save(output_path, 'PNG', optimize=True, compress_level=compression_level) buf.close() except ImportError: # Fallback to matplotlib if PIL not available plt.savefig(output_path, dpi=optimal_dpi, bbox_inches='tight', pad_inches=0.05, format='png') elif plot_format == "jpg" or plot_format == "jpeg": # Use JPEG for very large heatmaps quality = 85 if estimated_pixels > 10_000_000 else 90 plt.savefig(output_path, dpi=optimal_dpi, bbox_inches='tight', pad_inches=0.05, format='jpeg', quality=quality) elif plot_format == "pdf": # Use PDF save function output_path = _save_heatmap_pdf(fig, base_path, data_shape) else: # Default save plt.savefig(output_path, dpi=optimal_dpi, bbox_inches='tight', pad_inches=0.05, format=plot_format) # Log file size for monitoring if os.path.exists(output_path): file_size_mb = os.path.getsize(output_path) / (1024 * 1024) if file_size_mb > 10: print(f" āš ļø Large file: {output_path} ({file_size_mb:.1f} MB)") return output_path def _adaptive_downsample_precond(data: torch.Tensor, max_side: int = 256, preserve_patterns: bool = True) -> torch.Tensor: """ Adaptively downsample preconditioner data while preserving important patterns. Args: data: 2D tensor to downsample max_side: Maximum dimension for output preserve_patterns: Whether to use max pooling to preserve high-value regions Returns: Downsampled tensor """ if data.shape[0] <= max_side and data.shape[1] <= max_side: return data # Calculate downsampling factors factor_h = max(1, data.shape[0] // max_side) factor_w = max(1, data.shape[1] // max_side) if preserve_patterns and factor_h > 1 and factor_w > 1: # Use max pooling to preserve high-value regions # This is important for preconditioners where high values indicate importance import torch.nn.functional as F # Ensure data is 4D for pooling (batch, channel, height, width) data_4d = data.unsqueeze(0).unsqueeze(0) # Apply max pooling pooled = F.max_pool2d(data_4d, kernel_size=(factor_h, factor_w), stride=(factor_h, factor_w)) # Remove extra dimensions result = pooled.squeeze(0).squeeze(0) # If result is still too large, use stride-based sampling if result.shape[0] > max_side or result.shape[1] > max_side: step_h = max(1, result.shape[0] // max_side) step_w = max(1, result.shape[1] // max_side) result = result[::step_h, ::step_w] return result else: # Simple stride-based downsampling step_h = max(1, int(torch.ceil(torch.tensor(data.shape[0] / max_side)).item())) step_w = max(1, int(torch.ceil(torch.tensor(data.shape[1] / max_side)).item())) return data[::step_h, ::step_w] def _plot_precond_histogram(data_tensor: torch.Tensor, title_prefix: str, base_filename: str, out_dir: str, use_log_x_scale_heuristic: bool = False, force_linear_x_scale: bool = False, plot_format: str = "png", font_scale: float = 1.0) -> None: """ Creates histogram for preconditioner data with publication-ready styling. """ _set_publication_fonts(scale_factor=font_scale) plt.figure(figsize=(10, 6)) numpy_data = data_tensor.detach().cpu().flatten().numpy() current_xlabel = title_prefix positive_data_for_log = numpy_data[numpy_data > 0] if force_linear_x_scale: plt.hist(numpy_data, bins=100, edgecolor='black', linewidth=0.5) elif use_log_x_scale_heuristic and len(positive_data_for_log) > 0 and positive_data_for_log.max() > 1000: if (numpy_data == 0).any(): min_log_val = np.log10(max(1e-30, positive_data_for_log.min())) max_log_val = np.log10(positive_data_for_log.max()) if max_log_val > min_log_val: bins = np.logspace(min_log_val, max_log_val, 50) plt.hist(positive_data_for_log, bins=bins, label=f'>0 values (max {positive_data_for_log.max():.2e})', edgecolor='black', linewidth=0.5) else: plt.hist(positive_data_for_log, bins=50, label=f'>0 values (max {positive_data_for_log.max():.2e})', edgecolor='black', linewidth=0.5) plt.legend(fontsize=plt.rcParams['legend.fontsize']) plt.xscale('log') else: min_log_val = np.log10(max(1e-30, positive_data_for_log.min())) max_log_val = np.log10(positive_data_for_log.max()) if max_log_val > min_log_val: bins = np.logspace(min_log_val, max_log_val, 50) plt.hist(positive_data_for_log, bins=bins, edgecolor='black', linewidth=0.5) else: plt.hist(positive_data_for_log, bins=50, edgecolor='black', linewidth=0.5) plt.xscale('log') current_xlabel = f"{title_prefix} (Log Scale for x > 0)" else: plt.hist(numpy_data, bins=100, edgecolor='black', linewidth=0.5) # Extract parameter info for cleaner title param_info = _extract_parameter_info(base_filename) plt.title(f"Histogram of {title_prefix}\n{param_info}") plt.xlabel(current_xlabel) plt.ylabel("Frequency") plt.grid(True, linestyle='--', alpha=0.7) clean_title_prefix = title_prefix.lower().replace(' ', '_').replace('/', '_').replace('(', '').replace(')', '').replace('>', 'gt') histograms_dir = os.path.join(out_dir, "histograms") os.makedirs(histograms_dir, exist_ok=True) histogram_path = os.path.join(histograms_dir, f"{base_filename}_{clean_title_prefix}_histogram.{plot_format}") plt.tight_layout() plt.savefig(histogram_path, bbox_inches='tight', pad_inches=0.05, dpi=300) plt.close() def _plot_precond_heatmap(data_tensor: torch.Tensor, title_prefix: str, base_filename: str, out_dir: str, force_linear_scale: bool = False, plot_format: str = "png", font_scale: float = 1.0, max_side: int = 256) -> None: """ Creates heatmap for preconditioner data with publication-ready styling. """ if data_tensor.ndim != 2: return _set_publication_fonts(scale_factor=font_scale) # Downsample if needed data = data_tensor.detach().cpu() if data.shape[0] > max_side or data.shape[1] > max_side: # Use adaptive downsampling to preserve important patterns data = _adaptive_downsample_precond(data, max_side, preserve_patterns=True) plt.figure(figsize=(12, 10)) numpy_tensor = data.numpy() # Sanitize non-finite values if not np.isfinite(numpy_tensor).all(): numpy_tensor = np.nan_to_num(numpy_tensor, nan=0.0, posinf=np.finfo(numpy_tensor.dtype if np.issubdtype(numpy_tensor.dtype, np.floating) else np.float32).max, neginf=0.0) norm = None scale_type = "linear" imshow_vmin = None imshow_vmax = None if force_linear_scale: imshow_vmin = 0 data_max = np.max(numpy_tensor) if numpy_tensor.size > 0 else 1.0 data_min = np.min(numpy_tensor) if numpy_tensor.size > 0 else 0.0 imshow_vmax = data_max if not np.isfinite(imshow_vmax): imshow_vmax = 1.0 if imshow_vmax <= imshow_vmin: imshow_vmax = imshow_vmin + 1.0 else: positive_values = numpy_tensor[np.isfinite(numpy_tensor) & (numpy_tensor > 1e-30)] if positive_values.size > 0: min_positive_val_for_norm = np.min(positive_values) max_val_for_norm = np.max(positive_values) else: min_positive_val_for_norm = 1e-30 max_val_for_norm = 1e-30 * 10 if positive_values.size > 0 and max_val_for_norm > min_positive_val_for_norm * 100 and np.isfinite(min_positive_val_for_norm) and np.isfinite(max_val_for_norm): vmin_candidate = max(min_positive_val_for_norm, 1e-30) vmax_candidate = max_val_for_norm if vmax_candidate <= vmin_candidate or np.isclose(vmax_candidate, vmin_candidate, rtol=1e-5, atol=1e-30): vmax_candidate = vmin_candidate * 10.0 norm = mcolors.LogNorm(vmin=vmin_candidate, vmax=vmax_candidate) scale_type = "logscale" else: finite_vals = numpy_tensor[np.isfinite(numpy_tensor)] if finite_vals.size > 0: imshow_vmin = np.min(finite_vals) imshow_vmax = np.max(finite_vals) if imshow_vmax <= imshow_vmin: imshow_vmax = imshow_vmin + 1.0 else: imshow_vmin = 0.0 imshow_vmax = 1.0 aspect_ratio = numpy_tensor.shape[1] / numpy_tensor.shape[0] aspect = 'auto' if aspect_ratio > 10 or aspect_ratio < 0.1 else 'equal' display_tensor = numpy_tensor if scale_type == "logscale" and norm is not None: display_tensor = np.maximum(display_tensor, norm.vmin) im = plt.imshow(display_tensor, aspect=aspect, cmap='viridis', norm=norm, vmin=imshow_vmin, vmax=imshow_vmax) cbar = plt.colorbar(im) cbar.ax.tick_params(labelsize=plt.rcParams['ytick.labelsize']) # Extract parameter info for cleaner title param_info = _extract_parameter_info(base_filename) plt.title(f"Heatmap of {title_prefix}\n{param_info}", pad=14) plt.xlabel("Dimension 1") plt.ylabel("Dimension 0") clean_title_prefix = title_prefix.lower().replace(' ', '_').replace('/', '_').replace('(', '').replace(')', '').replace('>', 'gt') heatmaps_dir = os.path.join(out_dir, "heatmaps") os.makedirs(heatmaps_dir, exist_ok=True) base_path = os.path.join(heatmaps_dir, f"{base_filename}_{clean_title_prefix}_heatmap_{scale_type}") # Use optimized save strategy fig = plt.gcf() output_path = _save_precond_heatmap_optimized(fig, base_path, data.shape, plot_format) plt.close() # Log compression info if os.path.exists(output_path): file_size_mb = os.path.getsize(output_path) / (1024 * 1024) print(f" Saved heatmap: {os.path.basename(output_path)} ({file_size_mb:.2f} MB, shape={data.shape})") def _plot_single_model_precond_heatmap(tensor: torch.Tensor, model_idx: int, base_filename: str, out_dir: str, model_names: Optional[List[str]] = None, max_side: int = 256, plot_format: str = "png", threshold: Optional[float] = None, zero_ratio: Optional[float] = None, heatmap_floor_log_offset: Optional[float] = None, font_scale: float = 1.0, compression_level: int = 9) -> None: """ Creates a heatmap for a single model's preconditioner values with publication-ready styling. """ if tensor.numel() == 0 or tensor.ndim != 2: return _set_publication_fonts(scale_factor=font_scale) data = tensor.detach().abs().cpu() if data.shape[0] > max_side or data.shape[1] > max_side: # Use adaptive downsampling to preserve high-value regions data = _adaptive_downsample_precond(data, max_side, preserve_patterns=True) if zero_ratio is not None and 0 < zero_ratio < 1: flat_data = data.flatten() if flat_data.numel() > 0: threshold_val = torch.quantile(flat_data, zero_ratio) values_to_keep = flat_data[flat_data > threshold_val] if values_to_keep.numel() > 0: min_val_to_keep = torch.min(values_to_keep) new_floor = min_val_to_keep if heatmap_floor_log_offset is not None and heatmap_floor_log_offset > 0 and min_val_to_keep > 0: new_floor = min_val_to_keep / (10**heatmap_floor_log_offset) data[data <= threshold_val] = new_floor else: data[data <= threshold_val] = 0.0 arr = data.numpy() if threshold is not None: arr[arr < threshold] = 0.0 eps = 1e-30 plt.figure(figsize=(6, 5)) img = plt.imshow(np.log10(np.maximum(arr, eps)), cmap='viridis', aspect='auto') chosen_name = model_names[model_idx] if model_names and model_idx < len(model_names) else f'Model {model_idx}' param_info = _extract_parameter_info(base_filename) plot_title = f"{chosen_name}\n{param_info}" plt.title(plot_title, fontsize=plt.rcParams['axes.titlesize'], pad=12) plt.axis("off") cbar = plt.colorbar(img, fraction=0.046, pad=0.04) cbar.set_label("log10(exp_avg_sq)", fontsize=plt.rcParams['axes.labelsize']) cbar.ax.tick_params(labelsize=plt.rcParams['ytick.labelsize']) plt.tight_layout() safe_model_name = chosen_name.replace("/", "-").replace("\\", "-") threshold_str = f"_thresh{threshold:.0e}" if threshold is not None else "" zero_ratio_str = f"_zero{zero_ratio:.2f}" if zero_ratio is not None and 0 < zero_ratio < 1 else "" heatmap_filename = f"{base_filename}_model_{model_idx}_{safe_model_name}_weights_heatmap{threshold_str}{zero_ratio_str}" per_model_dir = os.path.join(out_dir, "per_model_weight_heatmaps") os.makedirs(per_model_dir, exist_ok=True) base_path = os.path.join(per_model_dir, heatmap_filename) # Use optimized save strategy with lower DPI for per-model heatmaps fig = plt.gcf() # For per-model heatmaps, use more aggressive compression since we generate many output_path = _save_precond_heatmap_optimized(fig, base_path, data.shape, plot_format, compression_level=compression_level, is_per_model=True) plt.close() def _plot_dominant_model_precond_heatmap(display_tensor: torch.Tensor, num_models: int, title_prefix: str, base_filename: str, out_dir: str, threshold_value: float, model_names: Optional[List[str]] = None, plot_format: str = "png", font_scale: float = 1.0, max_side: int = 256) -> None: """ Creates a heatmap showing which model has dominant preconditioner values with publication-ready styling. """ if display_tensor.ndim != 2: return _set_publication_fonts(scale_factor=font_scale) # Downsample if needed data = display_tensor.detach().cpu() if data.shape[0] > max_side or data.shape[1] > max_side: # For integer data (model indices), use simple stride-based downsampling # to preserve exact values rather than max pooling step_h = max(1, int(torch.ceil(torch.tensor(data.shape[0] / max_side)).item())) step_w = max(1, int(torch.ceil(torch.tensor(data.shape[1] / max_side)).item())) data = data[::step_h, ::step_w] plt.figure(figsize=(12, 10)) numpy_display_tensor = data.numpy() # Choose colormap based on number of models if num_models <= 10: model_colors = plt.cm.get_cmap('tab10', num_models).colors elif num_models <= 12: model_colors = plt.cm.get_cmap('Paired', num_models).colors elif num_models <= 20: model_colors = plt.cm.get_cmap('tab20', num_models).colors else: model_colors = plt.cm.get_cmap('viridis', num_models).colors colors = ['black'] + [mcolors.to_hex(c) for c in model_colors] cmap = mcolors.ListedColormap(colors) bounds = [-1.5] + [i - 0.5 for i in range(num_models + 1)] norm = mcolors.BoundaryNorm(bounds, cmap.N) aspect_ratio = numpy_display_tensor.shape[1] / numpy_display_tensor.shape[0] aspect = 'auto' if aspect_ratio > 10 or aspect_ratio < 0.1 else 'equal' im = plt.imshow(numpy_display_tensor, aspect=aspect, cmap=cmap, norm=norm) ticks = list(range(-1, num_models)) cbar = plt.colorbar(im, ticks=ticks, spacing='proportional') base_tick_labels = [f'< {threshold_value:.1f}'] for i in range(num_models): name_i = model_names[i] if model_names and i < len(model_names) else f'Model {i}' base_tick_labels.append(name_i) cbar.set_ticklabels(base_tick_labels) cbar.ax.tick_params(labelsize=plt.rcParams['ytick.labelsize']) param_info = _extract_parameter_info(base_filename) plt.title(f"{title_prefix}\n{param_info}", fontsize=plt.rcParams['axes.titlesize'], pad=18) plt.xlabel("Dimension 1") plt.ylabel("Dimension 0") clean_title_prefix = title_prefix.lower().replace(' ', '_').replace('/', '_').replace('(', '').replace(')', '').replace('>', 'gt') dom_dir = os.path.join(out_dir, "dominant_model_heatmaps") os.makedirs(dom_dir, exist_ok=True) base_path = os.path.join(dom_dir, f"{base_filename}_{clean_title_prefix}_dominant_model_heatmap_thresh{threshold_value}") # Use optimized save strategy fig = plt.gcf() output_path = _save_precond_heatmap_optimized(fig, base_path, data.shape, plot_format) plt.close() def _looks_like_hf_repo_id(s: str) -> bool: """Check if string looks like a HuggingFace repo ID.""" import re return bool(re.match(r'^[^/\s]+/[^/\s]+$', s)) def _split_repo_and_file(path: str) -> Optional[tuple]: """Split HF repo path into repo ID and file path.""" import re m = re.match(r'^([^/\s]+/[^/\s]+)/(.*)$', path) if m: return m.group(1), m.group(2) return None def _resolve_preconditioner_file(model_id: str, precond_spec: Optional[str]) -> tuple: """ Resolves preconditioner file path from model ID and optional spec. Returns (display_name, local_file_path). """ display_name = model_id if precond_spec is None: # default relative path rel = "export/exp_avg_sq.safetensors" if _looks_like_hf_repo_id(model_id): try: local_path = hf_hub_download(model_id, rel) return display_name, local_path except: pass # treat model_id as local path from pathlib import Path local_candidate = Path(model_id) / rel if not local_candidate.exists(): raise FileNotFoundError(f"Preconditioner not found: {local_candidate}") return display_name, str(local_candidate) # If precond_spec encodes repo and file split = _split_repo_and_file(precond_spec) if split: repo_id, file_path = split try: local_path = hf_hub_download(repo_id, file_path) return display_name, local_path except: raise ImportError("huggingface_hub is required to resolve HF paths in preconditioner_path") # Else treat precond_spec as relative to model_id if _looks_like_hf_repo_id(model_id): try: local_path = hf_hub_download(model_id, precond_spec) return display_name, local_path except: pass from pathlib import Path local_candidate = Path(model_id) / precond_spec if not local_candidate.exists(): raise FileNotFoundError(f"Preconditioner not found: {local_candidate}") return display_name, str(local_candidate) def compare_preconditioners(model_entries: List[Dict[str, Any]], output_dir: str, threshold: float = 2.0, only_layers_containing: Optional[str] = None, max_heatmap_side: int = 256, no_per_model_heatmaps: bool = False, param_limit: Optional[int] = None, plot_format: str = "png", single_model_heatmap_threshold: Optional[float] = None, single_model_heatmap_zero_ratio: Optional[float] = None, heatmap_floor_log_offset: Optional[float] = None, compression_level: int = 9, adaptive_format: bool = True, preserve_patterns: bool = True, font_scaling: Optional[Dict[str, float]] = None, plots_to_generate: Optional[Dict[str, bool]] = None) -> None: """ Compare preconditioners across multiple models with professional visualization. """ os.makedirs(output_dir, exist_ok=True) # Get font scaling factors if font_scaling is None: font_scaling = {} default_scale = font_scaling.get('default', 1.0) if plots_to_generate is None: plots_to_generate = {} # Use adaptive format if requested if adaptive_format and plot_format == 'auto': actual_plot_format = 'auto' else: actual_plot_format = plot_format # Resolve preconditioner files resolved_files: List[str] = [] display_names: List[str] = [] for entry in model_entries: if isinstance(entry, str): model_id = entry precond = None friendly_name = None elif isinstance(entry, dict): model_id = entry.get('model') precond = entry.get('preconditioner_path') params = entry.get('parameters') or {} if precond is None and isinstance(params, dict): precond = params.get('preconditioner_path') friendly_name = entry.get('name') else: continue if not model_id and not precond: continue disp, local = _resolve_preconditioner_file(model_id or "", precond) used_name = friendly_name if friendly_name else (disp if disp else (model_id or "")) display_names.append(used_name) resolved_files.append(local) if len(resolved_files) < 1: raise ValueError("Need at least one model to visualize preconditioners") print(f"\n{'='*60}") print(f"Comparing preconditioners for {len(resolved_files)} models") print(f"Models: {', '.join(display_names)}") print(f"{'='*60}") # Save model manifest manifest_path = os.path.join(output_dir, "model_manifest.json") with open(manifest_path, 'w') as f: json.dump(display_names, f, indent=2) # Discover common keys per_model_keys: List[set] = [] for fp in resolved_files: keys = set() with safe_open(fp, framework="pt", device="cpu") as f: for k in f.keys(): keys.add(k) per_model_keys.append(keys) common_keys = set.intersection(*per_model_keys) if per_model_keys else set() if only_layers_containing: common_keys = {k for k in common_keys if only_layers_containing in k} # Sort and limit keys sorted_keys = sorted(common_keys) if param_limit is not None: sorted_keys = sorted_keys[:param_limit] if not sorted_keys: print("No common parameter keys found across models.") return print(f"Found {len(sorted_keys)} common parameters to compare") # Process each parameter for key_idx, k in enumerate(sorted_keys): print(f"\n[{key_idx+1}/{len(sorted_keys)}] Processing: {k}") # Clean up parameter name for display display_key = k.replace('.weight', '.exp_avg_sq') if display_key.startswith('model.'): display_key = display_key[len('model.'):] base_filename = display_key.replace('.', '_').replace('/', '_') if len(base_filename) > 180: base_filename = base_filename[:180] # Load tensors for this parameter from all models tensors = [] shapes = [] for fp in resolved_files: with safe_open(fp, framework="pt", device="cpu") as f: t = f.get_tensor(k) if t.ndim != 2: print(f" Skipping non-2D tensor with shape {t.shape}") break tensors.append(t) shapes.append(t.shape) if len(tensors) != len(resolved_files): continue # Check if all shapes match if len(set(shapes)) != 1: print(f" Skipping - shapes don't match: {shapes}") continue # Stack tensors for comparison weights_stack = torch.stack(tensors, dim=0) # Generate visualizations # 1) Standard deviation if plots_to_generate.get('precond_stddev', True): stddev_tensor = weights_stack.std(dim=0) hist_scale = font_scaling.get('precond_histogram', default_scale) heatmap_scale = font_scaling.get('precond_heatmap', default_scale) _plot_precond_histogram(stddev_tensor, "Element-wise StdDev", base_filename, output_dir, font_scale=hist_scale) _plot_precond_heatmap(stddev_tensor, "Element-wise StdDev", base_filename, output_dir, font_scale=heatmap_scale, max_side=max_heatmap_side) # 2) Per-model heatmaps if not no_per_model_heatmaps and plots_to_generate.get('precond_per_model', True): per_model_scale = font_scaling.get('precond_per_model', default_scale) # For many parameters, force JPEG to save space total_heatmaps = len(sorted_keys) * len(resolved_files) if total_heatmaps > 100 and actual_plot_format == 'auto': per_model_format = 'jpg' print(f" Note: Using JPEG format for {total_heatmaps} per-model heatmaps to save space") else: per_model_format = actual_plot_format for i in range(weights_stack.shape[0]): _plot_single_model_precond_heatmap( weights_stack[i, :, :], i, base_filename, output_dir, model_names=display_names, max_side=max_heatmap_side, plot_format=per_model_format, threshold=single_model_heatmap_threshold, zero_ratio=single_model_heatmap_zero_ratio, heatmap_floor_log_offset=heatmap_floor_log_offset, font_scale=per_model_scale, compression_level=compression_level ) # 3) Max/Min ratio if plots_to_generate.get('precond_max_min_ratio', True): max_weights = torch.max(weights_stack, dim=0).values min_weights = torch.min(weights_stack, dim=0).values max_min_ratio = max_weights / (min_weights + 1e-28) max_min_ratio = torch.clamp(max_min_ratio, max=1e12) max_min_ratio = torch.nan_to_num(max_min_ratio, nan=0.0) hist_scale = font_scaling.get('precond_histogram', default_scale) heatmap_scale = font_scaling.get('precond_heatmap', default_scale) _plot_precond_histogram(max_min_ratio, "Max-Min Weight Ratio", base_filename, output_dir, use_log_x_scale_heuristic=True, font_scale=hist_scale) _plot_precond_heatmap(max_min_ratio, "Max-Min Weight Ratio", base_filename, output_dir, font_scale=heatmap_scale, max_side=max_heatmap_side) # 4) Dominant model if plots_to_generate.get('precond_dominant_model', True): max_weights_op = torch.max(weights_stack, dim=0) max_weights = max_weights_op.values mean_weights = torch.mean(weights_stack, dim=0) max_mean_ratio = max_weights / (mean_weights + 1e-28) max_indices = max_weights_op.indices dominant_model_display = torch.full_like(max_indices, -1, dtype=torch.long) above_threshold_mask = max_mean_ratio >= threshold dominant_model_display[above_threshold_mask] = max_indices[above_threshold_mask] dom_scale = font_scaling.get('precond_dominant', default_scale) _plot_dominant_model_precond_heatmap( dominant_model_display, weights_stack.shape[0], f"Dominant Model (Max-Mean Ratio > {threshold})", base_filename, output_dir, threshold, model_names=display_names, plot_format=actual_plot_format, font_scale=dom_scale, max_side=max_heatmap_side ) print(f"\n{'='*60}") print("Preconditioner comparison completed!") print(f"Results saved to: {output_dir}") print(f"{'='*60}\n")