Alina Lozovskaya
commited on
Commit
·
adbcb04
1
Parent(s):
722c064
Fix local vision
Browse files
.env.example
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
OPENAI_API_KEY=
|
| 2 |
MODEL_NAME="gpt-realtime"
|
| 3 |
|
|
|
|
|
|
|
|
|
|
| 4 |
# Cache for local VLM
|
| 5 |
HF_HOME=./cache
|
| 6 |
|
|
|
|
| 1 |
OPENAI_API_KEY=
|
| 2 |
MODEL_NAME="gpt-realtime"
|
| 3 |
|
| 4 |
+
# Local vision model
|
| 5 |
+
LOCAL_VISION_MODEL=HuggingFaceTB/SmolVLM2-2.2B-Instruct
|
| 6 |
+
|
| 7 |
# Cache for local VLM
|
| 8 |
HF_HOME=./cache
|
| 9 |
|
src/reachy_mini_conversation_demo/vision/processors.py
CHANGED
|
@@ -1,11 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
-
import sys
|
| 3 |
import time
|
| 4 |
import base64
|
| 5 |
import asyncio
|
| 6 |
import logging
|
| 7 |
import threading
|
| 8 |
-
from typing import Any, Dict
|
| 9 |
from dataclasses import dataclass
|
| 10 |
|
| 11 |
import cv2
|
|
@@ -14,6 +13,8 @@ import torch
|
|
| 14 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 15 |
from huggingface_hub import snapshot_download
|
| 16 |
|
|
|
|
|
|
|
| 17 |
|
| 18 |
logger = logging.getLogger(__name__)
|
| 19 |
|
|
@@ -22,11 +23,9 @@ logger = logging.getLogger(__name__)
|
|
| 22 |
class VisionConfig:
|
| 23 |
"""Configuration for vision processing."""
|
| 24 |
|
| 25 |
-
|
| 26 |
-
model_path: str = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
|
| 27 |
vision_interval: float = 5.0
|
| 28 |
max_new_tokens: int = 64
|
| 29 |
-
temperature: float = 0.7
|
| 30 |
jpeg_quality: int = 85
|
| 31 |
max_retries: int = 3
|
| 32 |
retry_delay: float = 1.0
|
|
@@ -36,17 +35,17 @@ class VisionConfig:
|
|
| 36 |
class VisionProcessor:
|
| 37 |
"""Handles SmolVLM2 model loading and inference."""
|
| 38 |
|
| 39 |
-
def __init__(self,
|
| 40 |
"""Initialize the vision processor."""
|
| 41 |
-
self.
|
| 42 |
-
self.model_path = self.
|
| 43 |
self.device = self._determine_device()
|
| 44 |
self.processor = None
|
| 45 |
self.model = None
|
| 46 |
self._initialized = False
|
| 47 |
|
| 48 |
def _determine_device(self) -> str:
|
| 49 |
-
pref = self.
|
| 50 |
if pref == "cpu":
|
| 51 |
return "cpu"
|
| 52 |
if pref == "cuda":
|
|
@@ -61,7 +60,7 @@ class VisionProcessor:
|
|
| 61 |
def initialize(self) -> bool:
|
| 62 |
"""Load model and processor onto the selected device."""
|
| 63 |
try:
|
| 64 |
-
logger.info(f"Loading SmolVLM2 model on {self.device} (HF_HOME={
|
| 65 |
self.processor = AutoProcessor.from_pretrained(self.model_path)
|
| 66 |
|
| 67 |
# Select dtype depending on device
|
|
@@ -98,13 +97,13 @@ class VisionProcessor:
|
|
| 98 |
if not self._initialized:
|
| 99 |
return "Vision model not initialized"
|
| 100 |
|
| 101 |
-
for attempt in range(self.
|
| 102 |
try:
|
| 103 |
# Convert to JPEG bytes
|
| 104 |
success, jpeg_buffer = cv2.imencode(
|
| 105 |
".jpg",
|
| 106 |
cv2_image,
|
| 107 |
-
[cv2.IMWRITE_JPEG_QUALITY, self.
|
| 108 |
)
|
| 109 |
if not success:
|
| 110 |
return "Failed to encode image"
|
|
@@ -140,7 +139,7 @@ class VisionProcessor:
|
|
| 140 |
generated_ids = self.model.generate(
|
| 141 |
**inputs,
|
| 142 |
do_sample=False,
|
| 143 |
-
max_new_tokens=self.
|
| 144 |
pad_token_id=self.processor.tokenizer.eos_token_id,
|
| 145 |
)
|
| 146 |
|
|
@@ -165,17 +164,17 @@ class VisionProcessor:
|
|
| 165 |
logger.error(f"CUDA OOM on attempt {attempt + 1}: {e}")
|
| 166 |
if self.device == "cuda":
|
| 167 |
torch.cuda.empty_cache()
|
| 168 |
-
if attempt < self.
|
| 169 |
-
time.sleep(self.
|
| 170 |
else:
|
| 171 |
return "GPU out of memory - vision processing failed"
|
| 172 |
|
| 173 |
except Exception as e:
|
| 174 |
logger.error(f"Vision processing failed (attempt {attempt + 1}): {e}")
|
| 175 |
-
if attempt < self.
|
| 176 |
-
time.sleep(self.
|
| 177 |
else:
|
| 178 |
-
return f"Vision processing error after {self.
|
| 179 |
|
| 180 |
def _extract_response(self, full_text: str) -> str:
|
| 181 |
"""Extract the assistant's response from the full generated text."""
|
|
@@ -194,7 +193,6 @@ class VisionProcessor:
|
|
| 194 |
def get_model_info(self) -> Dict[str, Any]:
|
| 195 |
"""Get information about the loaded model."""
|
| 196 |
return {
|
| 197 |
-
"processor_type": "local",
|
| 198 |
"initialized": self._initialized,
|
| 199 |
"device": self.device,
|
| 200 |
"model_path": self.model_path,
|
|
@@ -208,14 +206,13 @@ class VisionProcessor:
|
|
| 208 |
class VisionManager:
|
| 209 |
"""Manages periodic vision processing and scene understanding."""
|
| 210 |
|
| 211 |
-
def __init__(self, camera,
|
| 212 |
"""Initialize vision manager with camera and configuration."""
|
| 213 |
self.camera = camera
|
| 214 |
-
self.
|
| 215 |
-
self.vision_interval = self.
|
| 216 |
-
self.processor =
|
| 217 |
|
| 218 |
-
self._current_description = ""
|
| 219 |
self._last_processed_time = 0
|
| 220 |
|
| 221 |
# Initialize processor
|
|
@@ -230,8 +227,8 @@ class VisionManager:
|
|
| 230 |
current_time = time.time()
|
| 231 |
|
| 232 |
if current_time - self._last_processed_time >= self.vision_interval:
|
| 233 |
-
|
| 234 |
-
if
|
| 235 |
description = await asyncio.to_thread(
|
| 236 |
lambda: self.processor.process_image(
|
| 237 |
frame, "Briefly describe what you see in one sentence."
|
|
@@ -240,7 +237,6 @@ class VisionManager:
|
|
| 240 |
|
| 241 |
# Only update if we got a valid response
|
| 242 |
if description and not description.startswith(("Vision", "Failed", "Error")):
|
| 243 |
-
self._current_description = description
|
| 244 |
self._last_processed_time = current_time
|
| 245 |
|
| 246 |
logger.info(f"Vision update: {description}")
|
|
@@ -255,29 +251,6 @@ class VisionManager:
|
|
| 255 |
|
| 256 |
logger.info("Vision loop finished")
|
| 257 |
|
| 258 |
-
async def get_current_description(self) -> str:
|
| 259 |
-
"""Get the most recent scene description (thread-safe)."""
|
| 260 |
-
return self._current_description
|
| 261 |
-
|
| 262 |
-
async def process_current_frame(self, prompt: str = "Describe what you see in detail.") -> Dict[str, Any]:
|
| 263 |
-
"""Process current camera frame with custom prompt."""
|
| 264 |
-
try:
|
| 265 |
-
success, frame = self.camera.read()
|
| 266 |
-
if not success or frame is None:
|
| 267 |
-
return {"error": "Failed to capture image from camera"}
|
| 268 |
-
|
| 269 |
-
description = await asyncio.to_thread(lambda: self.processor.process_image(frame, prompt))
|
| 270 |
-
|
| 271 |
-
return {
|
| 272 |
-
"description": description,
|
| 273 |
-
"timestamp": time.time(),
|
| 274 |
-
"prompt": prompt,
|
| 275 |
-
}
|
| 276 |
-
|
| 277 |
-
except Exception as e:
|
| 278 |
-
logger.exception("Failed to process current frame")
|
| 279 |
-
return {"error": f"Frame processing failed: {str(e)}"}
|
| 280 |
-
|
| 281 |
async def get_status(self) -> Dict[str, Any]:
|
| 282 |
"""Get comprehensive status information."""
|
| 283 |
return {
|
|
@@ -285,84 +258,59 @@ class VisionManager:
|
|
| 285 |
"processor_info": self.processor.get_model_info(),
|
| 286 |
"config": {
|
| 287 |
"interval": self.vision_interval,
|
| 288 |
-
"processor_type": self.config.processor_type,
|
| 289 |
},
|
| 290 |
}
|
| 291 |
|
| 292 |
|
| 293 |
-
def
|
| 294 |
-
"""Initialize
|
| 295 |
-
api_preference = cv2.CAP_AVFOUNDATION if sys.platform == "darwin" else 0
|
| 296 |
-
|
| 297 |
-
if simulation:
|
| 298 |
-
# Default build-in camera in SIM
|
| 299 |
-
# TODO: please, test on Linux and Windows
|
| 300 |
-
camera = cv2.VideoCapture(0, api_preference)
|
| 301 |
-
else:
|
| 302 |
-
# TODO handle macos properly
|
| 303 |
-
if sys.platform == "darwin":
|
| 304 |
-
camera = cv2.VideoCapture(camera_index, cv2.CAP_AVFOUNDATION)
|
| 305 |
-
else:
|
| 306 |
-
camera = cv2.VideoCapture(camera_index)
|
| 307 |
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
"""Create the appropriate vision processor (factory)."""
|
| 313 |
-
if config.processor_type == "openai":
|
| 314 |
-
try:
|
| 315 |
-
from .openai_vision import OpenAIVisionProcessor
|
| 316 |
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
else:
|
| 322 |
-
return VisionProcessor(config)
|
| 323 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
model_id = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
|
| 328 |
-
|
| 329 |
-
cache_dir = os.path.expandvars(os.getenv("HF_HOME", "$HOME/.cache/huggingface"))
|
| 330 |
-
|
| 331 |
-
# Only download model if using local processor
|
| 332 |
-
if processor_type == "local":
|
| 333 |
-
try:
|
| 334 |
-
os.makedirs(cache_dir, exist_ok=True)
|
| 335 |
-
os.environ["HF_HOME"] = cache_dir
|
| 336 |
-
logger.info("HF_HOME set to %s", cache_dir)
|
| 337 |
-
except Exception as e:
|
| 338 |
-
logger.warning("Failed to prepare HF cache dir %s: %s", cache_dir, e)
|
| 339 |
-
return None
|
| 340 |
-
|
| 341 |
snapshot_download(
|
| 342 |
repo_id=model_id,
|
| 343 |
repo_type="model",
|
| 344 |
cache_dir=cache_dir,
|
| 345 |
)
|
| 346 |
-
logger.info(f"
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import time
|
| 3 |
import base64
|
| 4 |
import asyncio
|
| 5 |
import logging
|
| 6 |
import threading
|
| 7 |
+
from typing import Any, Dict, Optional
|
| 8 |
from dataclasses import dataclass
|
| 9 |
|
| 10 |
import cv2
|
|
|
|
| 13 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 14 |
from huggingface_hub import snapshot_download
|
| 15 |
|
| 16 |
+
from reachy_mini_conversation_demo.config import config
|
| 17 |
+
|
| 18 |
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
|
|
|
| 23 |
class VisionConfig:
|
| 24 |
"""Configuration for vision processing."""
|
| 25 |
|
| 26 |
+
model_path: str = config.LOCAL_VISION_MODEL
|
|
|
|
| 27 |
vision_interval: float = 5.0
|
| 28 |
max_new_tokens: int = 64
|
|
|
|
| 29 |
jpeg_quality: int = 85
|
| 30 |
max_retries: int = 3
|
| 31 |
retry_delay: float = 1.0
|
|
|
|
| 35 |
class VisionProcessor:
|
| 36 |
"""Handles SmolVLM2 model loading and inference."""
|
| 37 |
|
| 38 |
+
def __init__(self, vision_config: VisionConfig = None):
|
| 39 |
"""Initialize the vision processor."""
|
| 40 |
+
self.vision_config = vision_config or VisionConfig()
|
| 41 |
+
self.model_path = self.vision_config.model_path
|
| 42 |
self.device = self._determine_device()
|
| 43 |
self.processor = None
|
| 44 |
self.model = None
|
| 45 |
self._initialized = False
|
| 46 |
|
| 47 |
def _determine_device(self) -> str:
|
| 48 |
+
pref = self.vision_config.device_preference
|
| 49 |
if pref == "cpu":
|
| 50 |
return "cpu"
|
| 51 |
if pref == "cuda":
|
|
|
|
| 60 |
def initialize(self) -> bool:
|
| 61 |
"""Load model and processor onto the selected device."""
|
| 62 |
try:
|
| 63 |
+
logger.info(f"Loading SmolVLM2 model on {self.device} (HF_HOME={config.HF_HOME})")
|
| 64 |
self.processor = AutoProcessor.from_pretrained(self.model_path)
|
| 65 |
|
| 66 |
# Select dtype depending on device
|
|
|
|
| 97 |
if not self._initialized:
|
| 98 |
return "Vision model not initialized"
|
| 99 |
|
| 100 |
+
for attempt in range(self.vision_config.max_retries):
|
| 101 |
try:
|
| 102 |
# Convert to JPEG bytes
|
| 103 |
success, jpeg_buffer = cv2.imencode(
|
| 104 |
".jpg",
|
| 105 |
cv2_image,
|
| 106 |
+
[cv2.IMWRITE_JPEG_QUALITY, self.vision_config.jpeg_quality],
|
| 107 |
)
|
| 108 |
if not success:
|
| 109 |
return "Failed to encode image"
|
|
|
|
| 139 |
generated_ids = self.model.generate(
|
| 140 |
**inputs,
|
| 141 |
do_sample=False,
|
| 142 |
+
max_new_tokens=self.vision_config.max_new_tokens,
|
| 143 |
pad_token_id=self.processor.tokenizer.eos_token_id,
|
| 144 |
)
|
| 145 |
|
|
|
|
| 164 |
logger.error(f"CUDA OOM on attempt {attempt + 1}: {e}")
|
| 165 |
if self.device == "cuda":
|
| 166 |
torch.cuda.empty_cache()
|
| 167 |
+
if attempt < self.vision_config.max_retries - 1:
|
| 168 |
+
time.sleep(self.vision_config.retry_delay * (attempt + 1))
|
| 169 |
else:
|
| 170 |
return "GPU out of memory - vision processing failed"
|
| 171 |
|
| 172 |
except Exception as e:
|
| 173 |
logger.error(f"Vision processing failed (attempt {attempt + 1}): {e}")
|
| 174 |
+
if attempt < self.vision_config.max_retries - 1:
|
| 175 |
+
time.sleep(self.vision_config.retry_delay)
|
| 176 |
else:
|
| 177 |
+
return f"Vision processing error after {self.vision_config.max_retries} attempts"
|
| 178 |
|
| 179 |
def _extract_response(self, full_text: str) -> str:
|
| 180 |
"""Extract the assistant's response from the full generated text."""
|
|
|
|
| 193 |
def get_model_info(self) -> Dict[str, Any]:
|
| 194 |
"""Get information about the loaded model."""
|
| 195 |
return {
|
|
|
|
| 196 |
"initialized": self._initialized,
|
| 197 |
"device": self.device,
|
| 198 |
"model_path": self.model_path,
|
|
|
|
| 206 |
class VisionManager:
|
| 207 |
"""Manages periodic vision processing and scene understanding."""
|
| 208 |
|
| 209 |
+
def __init__(self, camera, vision_config: VisionConfig = None):
|
| 210 |
"""Initialize vision manager with camera and configuration."""
|
| 211 |
self.camera = camera
|
| 212 |
+
self.vision_config = vision_config or VisionConfig()
|
| 213 |
+
self.vision_interval = self.vision_config.vision_interval
|
| 214 |
+
self.processor = VisionProcessor(self.vision_config)
|
| 215 |
|
|
|
|
| 216 |
self._last_processed_time = 0
|
| 217 |
|
| 218 |
# Initialize processor
|
|
|
|
| 227 |
current_time = time.time()
|
| 228 |
|
| 229 |
if current_time - self._last_processed_time >= self.vision_interval:
|
| 230 |
+
frame = self.camera.get_latest_frame()
|
| 231 |
+
if frame is not None:
|
| 232 |
description = await asyncio.to_thread(
|
| 233 |
lambda: self.processor.process_image(
|
| 234 |
frame, "Briefly describe what you see in one sentence."
|
|
|
|
| 237 |
|
| 238 |
# Only update if we got a valid response
|
| 239 |
if description and not description.startswith(("Vision", "Failed", "Error")):
|
|
|
|
| 240 |
self._last_processed_time = current_time
|
| 241 |
|
| 242 |
logger.info(f"Vision update: {description}")
|
|
|
|
| 251 |
|
| 252 |
logger.info("Vision loop finished")
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
async def get_status(self) -> Dict[str, Any]:
|
| 255 |
"""Get comprehensive status information."""
|
| 256 |
return {
|
|
|
|
| 258 |
"processor_info": self.processor.get_model_info(),
|
| 259 |
"config": {
|
| 260 |
"interval": self.vision_interval,
|
|
|
|
| 261 |
},
|
| 262 |
}
|
| 263 |
|
| 264 |
|
| 265 |
+
def initialize_vision_manager(camera_worker) -> Optional[VisionManager]:
|
| 266 |
+
"""Initialize vision manager with model download and configuration.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
+
Args:
|
| 269 |
+
camera_worker: CameraWorker instance for frame capture
|
| 270 |
+
Returns:
|
| 271 |
+
VisionManager instance or None if initialization fails
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
+
"""
|
| 274 |
+
try:
|
| 275 |
+
model_id = config.LOCAL_VISION_MODEL
|
| 276 |
+
cache_dir = os.path.expanduser(config.HF_HOME)
|
|
|
|
|
|
|
| 277 |
|
| 278 |
+
# Prepare cache directory
|
| 279 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 280 |
+
os.environ["HF_HOME"] = cache_dir
|
| 281 |
+
logger.info("HF_HOME set to %s", cache_dir)
|
| 282 |
|
| 283 |
+
# Download model to cache
|
| 284 |
+
logger.info(f"Downloading vision model {model_id} to cache...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
snapshot_download(
|
| 286 |
repo_id=model_id,
|
| 287 |
repo_type="model",
|
| 288 |
cache_dir=cache_dir,
|
| 289 |
)
|
| 290 |
+
logger.info(f"Model {model_id} downloaded to {cache_dir}")
|
| 291 |
+
|
| 292 |
+
# Configure vision processing
|
| 293 |
+
vision_config = VisionConfig(
|
| 294 |
+
model_path=model_id,
|
| 295 |
+
vision_interval=5.0,
|
| 296 |
+
max_new_tokens=64,
|
| 297 |
+
jpeg_quality=85,
|
| 298 |
+
max_retries=3,
|
| 299 |
+
retry_delay=1.0,
|
| 300 |
+
device_preference="auto",
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
# Initialize vision manager
|
| 304 |
+
vision_manager = VisionManager(camera_worker, vision_config)
|
| 305 |
+
|
| 306 |
+
# Log device info
|
| 307 |
+
device_info = vision_manager.processor.get_model_info()
|
| 308 |
+
logger.info(
|
| 309 |
+
f"Vision processing enabled: {device_info.get('model_path')} on {device_info.get('device')}"
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
return vision_manager
|
| 313 |
+
|
| 314 |
+
except Exception as e:
|
| 315 |
+
logger.error(f"Failed to initialize vision manager: {e}")
|
| 316 |
+
return None
|