Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -186,7 +186,7 @@ def get_uitars_prompt(task, image):
|
|
| 186 |
|
| 187 |
# --- Holo2 Prompt ---
|
| 188 |
def get_holo2_prompt(task, image):
|
| 189 |
-
# Holo2
|
| 190 |
return [
|
| 191 |
{
|
| 192 |
"role": "user",
|
|
@@ -211,7 +211,7 @@ def get_image_proc_params(processor) -> Dict[str, int]:
|
|
| 211 |
# -----------------------------------------------------------------------------
|
| 212 |
|
| 213 |
def parse_uitars_response(text: str) -> List[Dict]:
|
| 214 |
-
"""Parse UI-TARS
|
| 215 |
actions = []
|
| 216 |
text = text.strip()
|
| 217 |
|
|
@@ -221,13 +221,10 @@ def parse_uitars_response(text: str) -> List[Dict]:
|
|
| 221 |
m = re.findall(r"point=\[\s*(\d+)\s*,\s*(\d+)\s*\]", text, re.IGNORECASE)
|
| 222 |
for p in m: actions.append({"type": "click", "x": int(p[0]), "y": int(p[1]), "text": ""})
|
| 223 |
|
| 224 |
-
m = re.search(r"start_box=['\"]?\(\s*(\d+)\s*,\s*(\d+)\s*\)['\"]?", text, re.IGNORECASE)
|
| 225 |
-
if m: actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""})
|
| 226 |
-
|
| 227 |
return actions
|
| 228 |
|
| 229 |
def parse_fara_response(response: str) -> List[Dict]:
|
| 230 |
-
"""Parse Fara
|
| 231 |
actions = []
|
| 232 |
matches = re.findall(r"<tool_call>(.*?)</tool_call>", response, re.DOTALL)
|
| 233 |
for match in matches:
|
|
@@ -245,70 +242,56 @@ def parse_fara_response(response: str) -> List[Dict]:
|
|
| 245 |
return actions
|
| 246 |
|
| 247 |
def parse_holo2_response(generated_ids, processor, input_len) -> Tuple[str, str, List[Dict]]:
|
| 248 |
-
"""Parse Holo2 reasoning
|
| 249 |
all_ids = generated_ids[0].tolist()
|
| 250 |
|
| 251 |
-
#
|
| 252 |
THOUGHT_START = 151667
|
| 253 |
THOUGHT_END = 151668
|
| 254 |
|
| 255 |
thinking_content = ""
|
| 256 |
content = ""
|
| 257 |
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
output_ids = all_ids[input_len:]
|
| 276 |
-
content = processor.decode(output_ids, skip_special_tokens=True).strip()
|
| 277 |
-
except Exception as e:
|
| 278 |
-
print(f"Holo Parsing Error: {e}")
|
| 279 |
-
content = processor.decode(all_ids[input_len:], skip_special_tokens=True).strip()
|
| 280 |
-
|
| 281 |
-
# Parse JSON Content
|
| 282 |
actions = []
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
if "
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
"x": float(x),
|
| 306 |
-
"y": float(y),
|
| 307 |
-
"text": data.get("description", "") or data.get("text", ""),
|
| 308 |
-
"scale_base": 1000 # Flag to indicate this needs normalization from 1000
|
| 309 |
-
})
|
| 310 |
-
except Exception as e:
|
| 311 |
-
print(f"Holo JSON Parse Failed: {e}")
|
| 312 |
|
| 313 |
return content, thinking_content, actions
|
| 314 |
|
|
@@ -325,38 +308,41 @@ def create_localized_image(original_image: Image.Image, actions: list[dict]) ->
|
|
| 325 |
x = act['x']
|
| 326 |
y = act['y']
|
| 327 |
|
| 328 |
-
#
|
|
|
|
|
|
|
|
|
|
| 329 |
if act.get('scale_base') == 1000:
|
| 330 |
-
pixel_x = int((x / 1000) * width)
|
| 331 |
-
pixel_y = int((y / 1000) * height)
|
| 332 |
-
# Normalized
|
| 333 |
elif x <= 1.0 and y <= 1.0 and x > 0:
|
| 334 |
pixel_x = int(x * width)
|
| 335 |
pixel_y = int(y * height)
|
| 336 |
-
# Absolute Pixels
|
| 337 |
else:
|
| 338 |
pixel_x = int(x)
|
| 339 |
pixel_y = int(y)
|
| 340 |
|
| 341 |
-
color = 'red'
|
| 342 |
|
| 343 |
-
# Draw
|
| 344 |
r = 15
|
| 345 |
-
draw.ellipse([pixel_x - r, pixel_y - r, pixel_x + r, pixel_y + r], outline=color, width=
|
| 346 |
-
draw.ellipse([pixel_x -
|
| 347 |
|
| 348 |
-
#
|
| 349 |
-
draw.line([pixel_x -
|
| 350 |
-
draw.line([pixel_x, pixel_y -
|
| 351 |
|
| 352 |
-
# Label
|
| 353 |
-
label = f"{act
|
| 354 |
-
|
| 355 |
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
|
| 361 |
return img_copy
|
| 362 |
|
|
@@ -366,18 +352,17 @@ def create_localized_image(original_image: Image.Image, actions: list[dict]) ->
|
|
| 366 |
|
| 367 |
@spaces.GPU(duration=120)
|
| 368 |
def process_screenshot(input_numpy_image: np.ndarray, task: str, model_choice: str):
|
| 369 |
-
if input_numpy_image is None: return "⚠️ Please upload an image.", None
|
| 370 |
|
| 371 |
input_pil_image = array_to_image(input_numpy_image)
|
| 372 |
orig_w, orig_h = input_pil_image.size
|
| 373 |
actions = []
|
| 374 |
raw_response = ""
|
| 375 |
-
reasoning_text =
|
| 376 |
|
| 377 |
# --- UI-TARS Logic ---
|
| 378 |
if model_choice == "UI-TARS-1.5-7B":
|
| 379 |
-
if model_x is None: return "Error: UI-TARS model failed to load.", None
|
| 380 |
-
print("Running UI-TARS...")
|
| 381 |
|
| 382 |
ip_params = get_image_proc_params(processor_x)
|
| 383 |
resized_h, resized_w = smart_resize(
|
|
@@ -400,7 +385,7 @@ def process_screenshot(input_numpy_image: np.ndarray, task: str, model_choice: s
|
|
| 400 |
|
| 401 |
actions = parse_uitars_response(raw_response)
|
| 402 |
|
| 403 |
-
# Rescale
|
| 404 |
scale_x = orig_w / resized_w
|
| 405 |
scale_y = orig_h / resized_h
|
| 406 |
for a in actions:
|
|
@@ -409,8 +394,7 @@ def process_screenshot(input_numpy_image: np.ndarray, task: str, model_choice: s
|
|
| 409 |
|
| 410 |
# --- Holo2 Logic ---
|
| 411 |
elif model_choice == "Holo2-8B":
|
| 412 |
-
if model_h is None: return "Error: Holo2 model failed to load.", None
|
| 413 |
-
print("Running Holo2...")
|
| 414 |
|
| 415 |
messages = get_holo2_prompt(task, input_pil_image)
|
| 416 |
text_prompt = processor_h.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
@@ -421,18 +405,12 @@ def process_screenshot(input_numpy_image: np.ndarray, task: str, model_choice: s
|
|
| 421 |
with torch.no_grad():
|
| 422 |
generated_ids = model_h.generate(**inputs, max_new_tokens=512)
|
| 423 |
|
| 424 |
-
# Parse Reasoning + Content
|
| 425 |
input_len = len(inputs.input_ids[0])
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
raw_response = content
|
| 429 |
-
reasoning_text = thinking
|
| 430 |
-
actions = parsed_actions
|
| 431 |
|
| 432 |
# --- Fara Logic ---
|
| 433 |
else:
|
| 434 |
-
if model_v is None: return "Error: Fara model failed to load.", None
|
| 435 |
-
print("Running Fara...")
|
| 436 |
messages = get_fara_prompt(task, input_pil_image)
|
| 437 |
text_prompt = processor_v.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 438 |
image_inputs, video_inputs = process_vision_info(messages)
|
|
@@ -446,20 +424,17 @@ def process_screenshot(input_numpy_image: np.ndarray, task: str, model_choice: s
|
|
| 446 |
raw_response = processor_v.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 447 |
actions = parse_fara_response(raw_response)
|
| 448 |
|
| 449 |
-
print(f"Raw: {raw_response}")
|
| 450 |
-
if reasoning_text: print(f"Thinking: {reasoning_text}")
|
| 451 |
-
|
| 452 |
# Visualize
|
| 453 |
output_image = input_pil_image
|
| 454 |
if actions:
|
| 455 |
vis = create_localized_image(input_pil_image, actions)
|
| 456 |
if vis: output_image = vis
|
| 457 |
|
| 458 |
-
|
| 459 |
if reasoning_text:
|
| 460 |
-
|
| 461 |
|
| 462 |
-
return
|
| 463 |
|
| 464 |
# -----------------------------------------------------------------------------
|
| 465 |
# 6. UI SETUP
|
|
|
|
| 186 |
|
| 187 |
# --- Holo2 Prompt ---
|
| 188 |
def get_holo2_prompt(task, image):
|
| 189 |
+
# Holo2 often expects a simple user prompt with the image
|
| 190 |
return [
|
| 191 |
{
|
| 192 |
"role": "user",
|
|
|
|
| 211 |
# -----------------------------------------------------------------------------
|
| 212 |
|
| 213 |
def parse_uitars_response(text: str) -> List[Dict]:
|
| 214 |
+
"""Parse UI-TARS output"""
|
| 215 |
actions = []
|
| 216 |
text = text.strip()
|
| 217 |
|
|
|
|
| 221 |
m = re.findall(r"point=\[\s*(\d+)\s*,\s*(\d+)\s*\]", text, re.IGNORECASE)
|
| 222 |
for p in m: actions.append({"type": "click", "x": int(p[0]), "y": int(p[1]), "text": ""})
|
| 223 |
|
|
|
|
|
|
|
|
|
|
| 224 |
return actions
|
| 225 |
|
| 226 |
def parse_fara_response(response: str) -> List[Dict]:
|
| 227 |
+
"""Parse Fara output"""
|
| 228 |
actions = []
|
| 229 |
matches = re.findall(r"<tool_call>(.*?)</tool_call>", response, re.DOTALL)
|
| 230 |
for match in matches:
|
|
|
|
| 242 |
return actions
|
| 243 |
|
| 244 |
def parse_holo2_response(generated_ids, processor, input_len) -> Tuple[str, str, List[Dict]]:
|
| 245 |
+
"""Parse Holo2 reasoning and actions"""
|
| 246 |
all_ids = generated_ids[0].tolist()
|
| 247 |
|
| 248 |
+
# Qwen/Holo specific reasoning tokens
|
| 249 |
THOUGHT_START = 151667
|
| 250 |
THOUGHT_END = 151668
|
| 251 |
|
| 252 |
thinking_content = ""
|
| 253 |
content = ""
|
| 254 |
|
| 255 |
+
# 1. Extract Thinking
|
| 256 |
+
if THOUGHT_START in all_ids:
|
| 257 |
+
start_idx = all_ids.index(THOUGHT_START)
|
| 258 |
+
try:
|
| 259 |
+
end_idx = all_ids.index(THOUGHT_END)
|
| 260 |
+
except ValueError:
|
| 261 |
+
end_idx = len(all_ids)
|
| 262 |
+
thinking_ids = all_ids[start_idx+1:end_idx]
|
| 263 |
+
thinking_content = processor.decode(thinking_ids, skip_special_tokens=True).strip()
|
| 264 |
+
# Content is after thought_end
|
| 265 |
+
output_ids = all_ids[end_idx+1:]
|
| 266 |
+
content = processor.decode(output_ids, skip_special_tokens=True).strip()
|
| 267 |
+
else:
|
| 268 |
+
output_ids = all_ids[input_len:]
|
| 269 |
+
content = processor.decode(output_ids, skip_special_tokens=True).strip()
|
| 270 |
+
|
| 271 |
+
# 2. Extract Coordinates (Robust parsing)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
actions = []
|
| 273 |
+
|
| 274 |
+
# Pattern A: point=[x, y] (Common in Holo)
|
| 275 |
+
points = re.findall(r"point=\[\s*(\d+)\s*,\s*(\d+)\s*\]", content)
|
| 276 |
+
for p in points:
|
| 277 |
+
actions.append({"type": "click", "x": float(p[0]), "y": float(p[1]), "scale_base": 1000})
|
| 278 |
+
|
| 279 |
+
# Pattern B: JSON {"point": [x, y]}
|
| 280 |
+
json_candidates = re.findall(r"\{.*?\}", content, re.DOTALL)
|
| 281 |
+
for jc in json_candidates:
|
| 282 |
+
try:
|
| 283 |
+
data = json.loads(jc)
|
| 284 |
+
if "point" in data:
|
| 285 |
+
actions.append({"type": "click", "x": float(data["point"][0]), "y": float(data["point"][1]), "scale_base": 1000})
|
| 286 |
+
if "coordinate" in data:
|
| 287 |
+
actions.append({"type": "click", "x": float(data["coordinate"][0]), "y": float(data["coordinate"][1]), "scale_base": 1000})
|
| 288 |
+
except: pass
|
| 289 |
+
|
| 290 |
+
# Pattern C: Plain [x, y] at end of string
|
| 291 |
+
if not actions:
|
| 292 |
+
plain_coords = re.findall(r"\[\s*(\d+)\s*,\s*(\d+)\s*\]", content)
|
| 293 |
+
for p in plain_coords:
|
| 294 |
+
actions.append({"type": "click", "x": float(p[0]), "y": float(p[1]), "scale_base": 1000})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
return content, thinking_content, actions
|
| 297 |
|
|
|
|
| 308 |
x = act['x']
|
| 309 |
y = act['y']
|
| 310 |
|
| 311 |
+
# Scaling Logic
|
| 312 |
+
pixel_x, pixel_y = 0, 0
|
| 313 |
+
|
| 314 |
+
# Case 1: Holo2 0-1000 scale
|
| 315 |
if act.get('scale_base') == 1000:
|
| 316 |
+
pixel_x = int((x / 1000.0) * width)
|
| 317 |
+
pixel_y = int((y / 1000.0) * height)
|
| 318 |
+
# Case 2: Normalized 0-1
|
| 319 |
elif x <= 1.0 and y <= 1.0 and x > 0:
|
| 320 |
pixel_x = int(x * width)
|
| 321 |
pixel_y = int(y * height)
|
| 322 |
+
# Case 3: Absolute Pixels
|
| 323 |
else:
|
| 324 |
pixel_x = int(x)
|
| 325 |
pixel_y = int(y)
|
| 326 |
|
| 327 |
+
color = 'red'
|
| 328 |
|
| 329 |
+
# Draw Markers (Thicker for visibility)
|
| 330 |
r = 15
|
| 331 |
+
draw.ellipse([pixel_x - r, pixel_y - r, pixel_x + r, pixel_y + r], outline=color, width=5)
|
| 332 |
+
draw.ellipse([pixel_x - 4, pixel_y - 4, pixel_x + 4, pixel_y + 4], fill=color)
|
| 333 |
|
| 334 |
+
# Crosshair
|
| 335 |
+
draw.line([pixel_x - 20, pixel_y, pixel_x + 20, pixel_y], fill=color, width=3)
|
| 336 |
+
draw.line([pixel_x, pixel_y - 20, pixel_x, pixel_y + 20], fill=color, width=3)
|
| 337 |
|
| 338 |
+
# Text Label
|
| 339 |
+
label = f"{act.get('type','Action')}"
|
| 340 |
+
text_pos = (pixel_x + 20, pixel_y - 15)
|
| 341 |
|
| 342 |
+
if font:
|
| 343 |
+
bbox = draw.textbbox(text_pos, label, font=font)
|
| 344 |
+
draw.rectangle((bbox[0]-4, bbox[1]-2, bbox[2]+4, bbox[3]+2), fill="black")
|
| 345 |
+
draw.text(text_pos, label, fill="white", font=font)
|
| 346 |
|
| 347 |
return img_copy
|
| 348 |
|
|
|
|
| 352 |
|
| 353 |
@spaces.GPU(duration=120)
|
| 354 |
def process_screenshot(input_numpy_image: np.ndarray, task: str, model_choice: str):
|
| 355 |
+
if input_numpy_image is None: return "⚠️ Please upload an image.", None
|
| 356 |
|
| 357 |
input_pil_image = array_to_image(input_numpy_image)
|
| 358 |
orig_w, orig_h = input_pil_image.size
|
| 359 |
actions = []
|
| 360 |
raw_response = ""
|
| 361 |
+
reasoning_text = ""
|
| 362 |
|
| 363 |
# --- UI-TARS Logic ---
|
| 364 |
if model_choice == "UI-TARS-1.5-7B":
|
| 365 |
+
if model_x is None: return "Error: UI-TARS model failed to load.", None
|
|
|
|
| 366 |
|
| 367 |
ip_params = get_image_proc_params(processor_x)
|
| 368 |
resized_h, resized_w = smart_resize(
|
|
|
|
| 385 |
|
| 386 |
actions = parse_uitars_response(raw_response)
|
| 387 |
|
| 388 |
+
# Rescale UI-TARS coords
|
| 389 |
scale_x = orig_w / resized_w
|
| 390 |
scale_y = orig_h / resized_h
|
| 391 |
for a in actions:
|
|
|
|
| 394 |
|
| 395 |
# --- Holo2 Logic ---
|
| 396 |
elif model_choice == "Holo2-8B":
|
| 397 |
+
if model_h is None: return "Error: Holo2 model failed to load.", None
|
|
|
|
| 398 |
|
| 399 |
messages = get_holo2_prompt(task, input_pil_image)
|
| 400 |
text_prompt = processor_h.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
| 405 |
with torch.no_grad():
|
| 406 |
generated_ids = model_h.generate(**inputs, max_new_tokens=512)
|
| 407 |
|
|
|
|
| 408 |
input_len = len(inputs.input_ids[0])
|
| 409 |
+
raw_response, reasoning_text, actions = parse_holo2_response(generated_ids, processor_h, input_len)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
|
| 411 |
# --- Fara Logic ---
|
| 412 |
else:
|
| 413 |
+
if model_v is None: return "Error: Fara model failed to load.", None
|
|
|
|
| 414 |
messages = get_fara_prompt(task, input_pil_image)
|
| 415 |
text_prompt = processor_v.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 416 |
image_inputs, video_inputs = process_vision_info(messages)
|
|
|
|
| 424 |
raw_response = processor_v.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 425 |
actions = parse_fara_response(raw_response)
|
| 426 |
|
|
|
|
|
|
|
|
|
|
| 427 |
# Visualize
|
| 428 |
output_image = input_pil_image
|
| 429 |
if actions:
|
| 430 |
vis = create_localized_image(input_pil_image, actions)
|
| 431 |
if vis: output_image = vis
|
| 432 |
|
| 433 |
+
final_output = f"▶️ OUTPUT:\n{raw_response}"
|
| 434 |
if reasoning_text:
|
| 435 |
+
final_output = f"🧠 THINKING:\n{reasoning_text}\n\n" + final_output
|
| 436 |
|
| 437 |
+
return final_output, output_image
|
| 438 |
|
| 439 |
# -----------------------------------------------------------------------------
|
| 440 |
# 6. UI SETUP
|