import os import re import json import time import unicodedata import gc from io import BytesIO from typing import Iterable from typing import Tuple, Optional, List, Dict, Any import gradio as gr import numpy as np import torch import spaces from PIL import Image, ImageDraw, ImageFont from transformers import ( Qwen2_5_VLForConditionalGeneration, AutoProcessor, AutoModelForImageTextToText ) from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize from qwen_vl_utils import process_vision_info from gradio.themes import Soft from gradio.themes.utils import colors, fonts, sizes colors.steel_blue = colors.Color( name="steel_blue", c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2", c400="#529AC3", c500="#4682B4", c600="#3E72A0", c700="#36638C", c800="#2E5378", c900="#264364", c950="#1E3450", ) class SteelBlueTheme(Soft): def __init__( self, *, primary_hue: colors.Color | str = colors.gray, secondary_hue: colors.Color | str = colors.steel_blue, neutral_hue: colors.Color | str = colors.slate, text_size: sizes.Size | str = sizes.text_lg, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Outfit"), "Arial", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, text_size=text_size, font=font, font_mono=font_mono, ) super().set( background_fill_primary="*primary_50", background_fill_primary_dark="*primary_900", body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", button_primary_text_color="white", button_primary_text_color_hover="white", button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)", button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)", block_title_text_weight="600", block_border_width="3px", block_shadow="*shadow_drop_lg", button_primary_shadow="*shadow_drop_lg", button_large_padding="11px", ) steel_blue_theme = SteelBlueTheme() device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Running on device: {device}") print("🔄 Loading Fara-7B...") MODEL_ID_V = "microsoft/Fara-7B" try: processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True) model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_V, trust_remote_code=True, torch_dtype=torch.float16 ).to(device).eval() except Exception as e: print(f"Failed to load Fara: {e}") model_v = None processor_v = None print("🔄 Loading UI-TARS-1.5-7B...") MODEL_ID_X = "ByteDance-Seed/UI-TARS-1.5-7B" try: processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True, use_fast=False) model_x = AutoModelForImageTextToText.from_pretrained( MODEL_ID_X, trust_remote_code=True, torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32, ).to(device).eval() except Exception as e: print(f"Failed to load UI-TARS: {e}") model_x = None processor_x = None print("🔄 Loading Holo1-3B...") MODEL_ID_H = "Hcompany/Holo1-3B" try: processor_h = AutoProcessor.from_pretrained(MODEL_ID_H, trust_remote_code=True) model_h = AutoModelForImageTextToText.from_pretrained( MODEL_ID_H, trust_remote_code=True, torch_dtype=torch.float16 ).to(device).eval() except Exception as e: print(f"Failed to load Holo: {e}") model_h = None processor_h = None print("✅ Models loading sequence complete.") def array_to_image(image_array: np.ndarray) -> Image.Image: if image_array is None: raise ValueError("No image provided.") return Image.fromarray(np.uint8(image_array)) def get_image_proc_params(processor) -> Dict[str, int]: ip = getattr(processor, "image_processor", None) default_min = 256 * 256 default_max = 1280 * 1280 patch_size = getattr(ip, "patch_size", 14) merge_size = getattr(ip, "merge_size", 2) min_pixels = getattr(ip, "min_pixels", default_min) max_pixels = getattr(ip, "max_pixels", default_max) if min_pixels is None: min_pixels = default_min if max_pixels is None: max_pixels = default_max return { "patch_size": patch_size, "merge_size": merge_size, "min_pixels": min_pixels, "max_pixels": max_pixels, } def apply_chat_template_compat(processor, messages: List[Dict[str, Any]]) -> str: tok = getattr(processor, "tokenizer", None) if hasattr(processor, "apply_chat_template"): return processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) if tok is not None and hasattr(tok, "apply_chat_template"): return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) texts = [] for m in messages: content = m.get("content", "") if isinstance(content, list): for c in content: if isinstance(c, dict) and c.get("type") == "text": texts.append(c.get("text", "")) elif isinstance(content, str): texts.append(content) return "\n".join(texts) def batch_decode_compat(processor, token_id_batches, **kw): tok = getattr(processor, "tokenizer", None) if hasattr(processor, "batch_decode"): return processor.batch_decode(token_id_batches, **kw) if tok is not None and hasattr(tok, "batch_decode"): return tok.batch_decode(token_id_batches, **kw) raise AttributeError("No batch_decode available on processor or tokenizer.") def trim_generated(generated_ids, inputs): in_ids = getattr(inputs, "input_ids", None) if in_ids is None and isinstance(inputs, dict): in_ids = inputs.get("input_ids", None) if in_ids is None: return generated_ids return [out_ids[len(in_seq):] for in_seq, out_ids in zip(in_ids, generated_ids)] def get_fara_prompt(task, image): OS_SYSTEM_PROMPT = """You are a GUI agent. You are given a task and a screenshot of the current status. You need to generate the next action to complete the task. Output your action inside a block using JSON format. Include "coordinate": [x, y] in pixels for interactions. Examples: {"name": "User", "arguments": {"action": "click", "coordinate": [400, 300]}} {"name": "User", "arguments": {"action": "type", "coordinate": [100, 200], "text": "hello"}} """ return [ {"role": "system", "content": [{"type": "text", "text": OS_SYSTEM_PROMPT}]}, {"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": f"Instruction: {task}"}]}, ] def get_localization_prompt(task, image): guidelines = ( "Localize an element on the GUI image according to my instructions and " "output a click position as Click(x, y) with x num pixels from the left edge " "and y num pixels from the top edge." ) return [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": f"{guidelines}\n{task}"} ], } ] def parse_click_response(text: str) -> List[Dict]: actions = [] text = text.strip() print(f"Parsing click-style output: {text}") matches_click = re.findall(r"Click\s*\(\s*(\d+)\s*,\s*(\d+)\s*\)", text, re.IGNORECASE) for m in matches_click: actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""}) matches_point = re.findall(r"point=\[\s*(\d+)\s*,\s*(\d+)\s*\]", text, re.IGNORECASE) for m in matches_point: actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""}) matches_box = re.findall(r"start_box=['\"]?\(\s*(\d+)\s*,\s*(\d+)\s*\)['\"]?", text, re.IGNORECASE) for m in matches_box: actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""}) matches_tuple = re.findall(r"(?:^|\s)\(\s*(\d+)\s*,\s*(\d+)\s*\)(?:$|\s|,)", text) for m in matches_tuple: actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""}) unique_actions = [] seen = set() for a in actions: key = (a['type'], a['x'], a['y']) if key not in seen: seen.add(key) unique_actions.append(a) return unique_actions def parse_fara_response(response: str) -> List[Dict]: actions = [] matches = re.findall(r"(.*?)", response, re.DOTALL) for match in matches: try: data = json.loads(match.strip()) args = data.get("arguments", {}) coords = args.get("coordinate", []) action_type = args.get("action", "unknown") text_content = args.get("text", "") if coords and len(coords) == 2: actions.append({ "type": action_type, "x": float(coords[0]), "y": float(coords[1]), "text": text_content }) except Exception as e: print(f"Error parsing Fara JSON: {e}") pass return actions def create_localized_image(original_image: Image.Image, actions: list[dict]) -> Optional[Image.Image]: if not actions: return None img_copy = original_image.copy() draw = ImageDraw.Draw(img_copy) try: font = ImageFont.load_default(size=18) except IOError: font = ImageFont.load_default() for act in actions: x = act['x'] y = act['y'] pixel_x, pixel_y = int(x), int(y) color = 'red' if 'click' in act['type'].lower() else 'blue' r = 20 line_width = 5 draw.ellipse([pixel_x - r, pixel_y - r, pixel_x + r, pixel_y + r], outline=color, width=line_width) draw.ellipse([pixel_x - 4, pixel_y - 4, pixel_x + 4, pixel_y + 4], fill=color) label = f"{act['type'].capitalize()}" if act.get('text'): label += f": \"{act['text']}\"" text_pos = (pixel_x + 25, pixel_y - 15) try: bbox = draw.textbbox(text_pos, label, font=font) padded_bbox = (bbox[0]-4, bbox[1]-2, bbox[2]+4, bbox[3]+2) draw.rectangle(padded_bbox, fill="black", outline=color) draw.text(text_pos, label, fill="white", font=font) except Exception as e: draw.text(text_pos, label, fill="white") return img_copy @spaces.GPU def process_screenshot(input_numpy_image: np.ndarray, task: str, model_choice: str): if input_numpy_image is None: return "⚠️ Please upload an image.", None if not task.strip(): return "⚠️ Please provide a task instruction.", None input_pil_image = array_to_image(input_numpy_image) orig_w, orig_h = input_pil_image.size actions = [] raw_response = "" if model_choice == "Fara-7B": if model_v is None: return "Error: Fara model failed to load on startup.", None print("Using Fara Pipeline...") messages = get_fara_prompt(task, input_pil_image) text_prompt = processor_v.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor_v( text=[text_prompt], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ) inputs = inputs.to(device) with torch.no_grad(): generated_ids = model_v.generate(**inputs, max_new_tokens=512) generated_ids = trim_generated(generated_ids, inputs) raw_response = processor_v.batch_decode(generated_ids, skip_special_tokens=True)[0] actions = parse_fara_response(raw_response) else: if model_choice == "UI-TARS-1.5-7B": model, processor = model_x, processor_x if model is None: return "Error: UI-TARS model failed to load.", None print("Using UI-TARS Pipeline...") elif model_choice == "Holo1-3B": model, processor = model_h, processor_h if model is None: return "Error: Holo2-8B model failed to load.", None print("Using Holo1-3B Pipeline...") else: return f"Error: Unknown model '{model_choice}'", None ip_params = get_image_proc_params(processor) resized_h, resized_w = smart_resize( input_pil_image.height, input_pil_image.width, factor=ip_params["patch_size"] * ip_params["merge_size"], min_pixels=ip_params["min_pixels"], max_pixels=ip_params["max_pixels"] ) proc_image = input_pil_image.resize((resized_w, resized_h), Image.Resampling.LANCZOS) messages = get_localization_prompt(task, proc_image) text_prompt = apply_chat_template_compat(processor, messages) inputs = processor(text=[text_prompt], images=[proc_image], padding=True, return_tensors="pt") inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids = trim_generated(generated_ids, inputs) raw_response = batch_decode_compat(processor, generated_ids, skip_special_tokens=True)[0] actions = parse_click_response(raw_response) if resized_w > 0 and resized_h > 0: scale_x = orig_w / resized_w scale_y = orig_h / resized_h for a in actions: a['x'] = int(a['x'] * scale_x) a['y'] = int(a['y'] * scale_y) print(f"Raw Output: {raw_response}") print(f"Parsed Actions: {actions}") output_image = input_pil_image if actions: vis = create_localized_image(input_pil_image, actions) if vis: output_image = vis return raw_response, output_image css=""" #col-container { margin: 0 auto; max-width: 960px; } #main-title h1 {font-size: 2.1em !important;} """ with gr.Blocks() as demo: gr.Markdown("# **CUA GUI Operator 🖥️**", elem_id="main-title") gr.Markdown("Upload a screenshot, select a model, and provide a task. The model will determine the precise UI coordinates and actions.") with gr.Row(): with gr.Column(scale=2): input_image = gr.Image(label="Upload UI Image", type="numpy", height=500) with gr.Row(): model_choice = gr.Radio( choices=["Fara-7B", "UI-TARS-1.5-7B", "Holo1-3B"], label="Select Model", value="Fara-7B", interactive=True ) task_input = gr.Textbox( label="Task Instruction", placeholder="e.g. Click on the search bar", lines=2 ) submit_btn = gr.Button("Call CUA Agent", variant="primary") with gr.Column(scale=3): output_image = gr.Image(label="Visualized Action Points", elem_id="out_img", height=500) output_text = gr.Textbox(label="Agent Model Response", lines=10) submit_btn.click( fn=process_screenshot, inputs=[input_image, task_input, model_choice], outputs=[output_text, output_image] ) gr.Examples( examples=[ ["examples/1.jpg", "Search for 'Hugging Face'", "Fara-7B"], ["examples/2.jpg", "Click on the VLMs Collection", "UI-TARS-1.5-7B"], ["examples/3.jpg", "Where is the 'I'm Feeling Lucky' button?", "Holo1-3B"], ], inputs=[input_image, task_input, model_choice], label="Quick Examples" ) if __name__ == "__main__": demo.queue(max_size=50).launch(theme=steel_blue_theme, css=css, mcp_server=True, ssr_mode=False, show_error=True)