import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_community.retrievers import WikipediaRetriever
from langchain.tools.retriever import create_retriever_tool
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.llms import YandexGPT
from langchain_core.tools import tool
from supabase.client import Client, create_client
from langchain_deepseek import ChatDeepSeek
load_dotenv()
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content[:1000]}\n'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
supabase: Client = create_client(
os.environ.get("SUPABASE_URL"),
os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(
search_type="similarity",
search_kwargs={"k": 5}
),
name="question_search",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
wiki_search,
web_search,
arvix_search,
retriever_tool,
]
def build_graph():
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
repo_id = "Qwen/Qwen2.5-Coder-32B-Instruct"
),
)
#llm = YandexGPT(
# api_key=os.environ["YANDEX_API_KEY"],
# folder_id=os.environ["YANDEX_FOLDER_ID"],
# model_uri=os.environ["YANDEX_MODEL_URI"],
#)
#llm = ChatDeepSeek(
# model="deepseek-chat",
# temperature=0,
# max_tokens=None,
# timeout=None,
# max_retries=2,
#)
#llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(state["messages"][0].content)
print('Similar questions:')
print(similar_question)
if len(similar_question) > 0:
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
#return {"messages": [{"role": "system", "content": similar_question[0].page_content}]}
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
return {"messages": [sys_msg] + state["messages"]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
return builder.compile()