Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import io
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import (
|
| 7 |
+
AutoImageProcessor,
|
| 8 |
+
AutoTokenizer,
|
| 9 |
+
AutoModelForCausalLM,
|
| 10 |
+
)
|
| 11 |
+
import numpy as np
|
| 12 |
+
import ast
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
model_root = "qihoo360/fg-clip2-base"
|
| 16 |
+
|
| 17 |
+
model = AutoModelForCausalLM.from_pretrained(model_root,trust_remote_code=True)
|
| 18 |
+
|
| 19 |
+
device = model.device
|
| 20 |
+
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_root)
|
| 22 |
+
image_processor = AutoImageProcessor.from_pretrained(model_root)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def determine_max_value(image):
|
| 26 |
+
|
| 27 |
+
w,h = image.size
|
| 28 |
+
max_val = (w//16)*(h//16)
|
| 29 |
+
|
| 30 |
+
if max_val > 784:
|
| 31 |
+
return 1024
|
| 32 |
+
elif max_val > 576:
|
| 33 |
+
return 784
|
| 34 |
+
elif max_val > 256:
|
| 35 |
+
return 576
|
| 36 |
+
elif max_val > 128:
|
| 37 |
+
return 256
|
| 38 |
+
else:
|
| 39 |
+
return 128
|
| 40 |
+
|
| 41 |
+
def postprocess_result(probs, labels):
|
| 42 |
+
pro_output = {labels[i]: probs[i] for i in range(len(labels))}
|
| 43 |
+
|
| 44 |
+
return pro_output
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def Retrieval(image, candidate_labels, text_type):
|
| 48 |
+
"""
|
| 49 |
+
Takes an image and a comma-separated string of candidate labels,
|
| 50 |
+
and returns the classification scores.
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
image = image.convert("RGB")
|
| 54 |
+
|
| 55 |
+
image_input = image_processor(images=image, max_num_patches=determine_max_value(image), return_tensors="pt").to(device)
|
| 56 |
+
|
| 57 |
+
candidate_labels = [candidate_labels.lower() for candidate_labels in candidate_labels]
|
| 58 |
+
|
| 59 |
+
if text_type=="long":
|
| 60 |
+
max_length = 196
|
| 61 |
+
else:
|
| 62 |
+
max_length = 64
|
| 63 |
+
|
| 64 |
+
caption_input = tokenizer(candidate_labels, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt").to(device)
|
| 65 |
+
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
image_feature = model.get_image_features(**image_input)
|
| 68 |
+
text_feature = model.get_text_features(**caption_input,walk_type=text_type)
|
| 69 |
+
image_feature = image_feature / image_feature.norm(p=2, dim=-1, keepdim=True)
|
| 70 |
+
text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True)
|
| 71 |
+
|
| 72 |
+
logits_per_image = image_feature @ text_feature.T
|
| 73 |
+
logit_scale, logit_bias = model.logit_scale.to(text_feature.device), model.logit_bias.to(text_feature.device)
|
| 74 |
+
logits_per_image = logits_per_image * logit_scale.exp() + logit_bias
|
| 75 |
+
print(logits_per_image)
|
| 76 |
+
# probs = torch.sigmoid(logits_per_image)
|
| 77 |
+
probs = logits_per_image.softmax(dim=1)
|
| 78 |
+
print(probs)
|
| 79 |
+
|
| 80 |
+
results = probs[0].tolist()
|
| 81 |
+
return results
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def infer(image, candidate_labels, text_type):
|
| 87 |
+
assert text_type in ["short","long", "box"]
|
| 88 |
+
candidate_labels = ast.literal_eval(candidate_labels)
|
| 89 |
+
fg_probs = Retrieval(image, candidate_labels,text_type)
|
| 90 |
+
return postprocess_result(fg_probs,candidate_labels)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
with gr.Blocks() as demo:
|
| 94 |
+
gr.Markdown("# FG-CLIP 2 Retrieval")
|
| 95 |
+
gr.Markdown(
|
| 96 |
+
|
| 97 |
+
"This app uses the FG-CLIP 2 model (qihoo360/fg-clip2-base) for retrieval on CPU :"
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
with gr.Row():
|
| 101 |
+
with gr.Column():
|
| 102 |
+
image_input = gr.Image(type="pil")
|
| 103 |
+
text_input = gr.Textbox(label="Input a list of labels, example:['a','b','c']")
|
| 104 |
+
text_type = gr.Textbox(label="form [short, long, box] select")
|
| 105 |
+
run_button = gr.Button("Run Retrieval", visible=True)
|
| 106 |
+
with gr.Column():
|
| 107 |
+
fg_output = gr.Label(label="FG-CLIP 2 Output", num_top_classes=11)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
examples = [
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
["./000093.jpg", str([
|
| 114 |
+
"一个简约风格的卧室角落,黑色金属衣架上挂着多件米色和白色的衣物,下方架子放着两双浅色鞋子,旁边是一盆绿植,左侧可见一张铺有白色床单和灰色枕头的床。",
|
| 115 |
+
"一个简约风格的卧室角落,黑色金属衣架上挂着多件红色和蓝色的衣物,下方架子放着两双黑色高跟鞋,旁边是一盆绿植,左侧可见一张铺有白色床单和灰色枕头的床。",
|
| 116 |
+
"一个简约风格的卧室角落,黑色金属衣架上挂着多件米色和白色的衣物,下方架子放着两双运动鞋,旁边是一盆仙人掌,左侧可见一张铺有白色床单和灰色枕头的床。",
|
| 117 |
+
"一个繁忙的街头市场,摊位上摆满水果,背景是高楼大厦,人们在喧闹中购物。"
|
| 118 |
+
]
|
| 119 |
+
)],
|
| 120 |
+
["./000093.jpg", str([
|
| 121 |
+
"A minimalist-style bedroom corner with a black metal clothing rack holding several beige and white garments, two pairs of light-colored shoes on the shelf below, a potted green plant nearby, and to the left, a bed made with white sheets and gray pillows.",
|
| 122 |
+
"A minimalist-style bedroom corner with a black metal clothing rack holding several red and blue garments, two pairs of black high heels on the shelf below, a potted green plant nearby, and to the left, a bed made with white sheets and gray pillows.",
|
| 123 |
+
"A minimalist-style bedroom corner with a black metal clothing rack holding several beige and white garments, two pairs of sneakers on the shelf below, a potted cactus nearby, and to the left, a bed made with white sheets and gray pillows.",
|
| 124 |
+
"A bustling street market with fruit-filled stalls, skyscrapers in the background, and people shopping amid the noise and activity."
|
| 125 |
+
]
|
| 126 |
+
)],
|
| 127 |
+
|
| 128 |
+
]
|
| 129 |
+
gr.Examples(
|
| 130 |
+
examples=examples,
|
| 131 |
+
inputs=[image_input, text_input, text_type],
|
| 132 |
+
outputs=fg_output,
|
| 133 |
+
fn=infer,
|
| 134 |
+
)
|
| 135 |
+
run_button.click(fn=infer, inputs=[image_input, text_input, text_type], outputs=fg_output)
|
| 136 |
+
|
| 137 |
+
# demo.launch(server_name="0.0.0.0", server_port=7861, share=True)
|
| 138 |
+
demo.launch()
|