Spaces:
Running
Running
Update
Browse files- README.md +1 -1
- app.py +32 -13
- requirements.txt +3 -2
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🏃
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.37.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
CHANGED
|
@@ -47,8 +47,9 @@ model = load_model()
|
|
| 47 |
labels = load_labels()
|
| 48 |
|
| 49 |
|
| 50 |
-
def predict(
|
| 51 |
-
|
|
|
|
| 52 |
_, height, width, _ = model.input_shape
|
| 53 |
image = np.asarray(image)
|
| 54 |
image = tf.image.resize(image,
|
|
@@ -60,12 +61,19 @@ def predict(image: PIL.Image.Image,
|
|
| 60 |
image = image / 255.
|
| 61 |
probs = model.predict(image[None, ...])[0]
|
| 62 |
probs = probs.astype(float)
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
if prob < score_threshold:
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
image_paths = load_sample_image_paths()
|
|
@@ -83,15 +91,26 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 83 |
value=0.5)
|
| 84 |
run_button = gr.Button('Run')
|
| 85 |
with gr.Column():
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
gr.Examples(examples=examples,
|
| 88 |
inputs=[image, score_threshold],
|
| 89 |
-
outputs=result,
|
| 90 |
fn=predict,
|
| 91 |
cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
|
| 92 |
|
| 93 |
-
run_button.click(
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
| 97 |
demo.queue().launch()
|
|
|
|
| 47 |
labels = load_labels()
|
| 48 |
|
| 49 |
|
| 50 |
+
def predict(
|
| 51 |
+
image: PIL.Image.Image, score_threshold: float
|
| 52 |
+
) -> tuple[dict[str, float], dict[str, float], str]:
|
| 53 |
_, height, width, _ = model.input_shape
|
| 54 |
image = np.asarray(image)
|
| 55 |
image = tf.image.resize(image,
|
|
|
|
| 61 |
image = image / 255.
|
| 62 |
probs = model.predict(image[None, ...])[0]
|
| 63 |
probs = probs.astype(float)
|
| 64 |
+
|
| 65 |
+
indices = np.argsort(probs)[::-1]
|
| 66 |
+
result_all = dict()
|
| 67 |
+
result_threshold = dict()
|
| 68 |
+
for index in indices:
|
| 69 |
+
label = labels[index]
|
| 70 |
+
prob = probs[index]
|
| 71 |
+
result_all[label] = prob
|
| 72 |
if prob < score_threshold:
|
| 73 |
+
break
|
| 74 |
+
result_threshold[label] = prob
|
| 75 |
+
result_text = ', '.join(result_all.keys())
|
| 76 |
+
return result_threshold, result_all, result_text
|
| 77 |
|
| 78 |
|
| 79 |
image_paths = load_sample_image_paths()
|
|
|
|
| 91 |
value=0.5)
|
| 92 |
run_button = gr.Button('Run')
|
| 93 |
with gr.Column():
|
| 94 |
+
with gr.Tabs():
|
| 95 |
+
with gr.Tab(label='Output'):
|
| 96 |
+
result = gr.Label(label='Output', show_label=False)
|
| 97 |
+
with gr.Tab(label='JSON'):
|
| 98 |
+
result_json = gr.JSON(label='JSON output',
|
| 99 |
+
show_label=False)
|
| 100 |
+
with gr.Tab(label='Text'):
|
| 101 |
+
result_text = gr.Text(label='Text output',
|
| 102 |
+
show_label=False,
|
| 103 |
+
lines=5)
|
| 104 |
gr.Examples(examples=examples,
|
| 105 |
inputs=[image, score_threshold],
|
| 106 |
+
outputs=[result, result_json, result_text],
|
| 107 |
fn=predict,
|
| 108 |
cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
|
| 109 |
|
| 110 |
+
run_button.click(
|
| 111 |
+
fn=predict,
|
| 112 |
+
inputs=[image, score_threshold],
|
| 113 |
+
outputs=[result, result_json, result_text],
|
| 114 |
+
api_name='predict',
|
| 115 |
+
)
|
| 116 |
demo.queue().launch()
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
-
pillow>=9.0.0
|
| 2 |
-
tensorflow>=2.7.0
|
| 3 |
git+https://github.com/KichangKim/DeepDanbooru@v3-20200915-sgd-e30#egg=deepdanbooru
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
git+https://github.com/KichangKim/DeepDanbooru@v3-20200915-sgd-e30#egg=deepdanbooru
|
| 2 |
+
pillow==10.0.0
|
| 3 |
+
pydantic==1.10.11
|
| 4 |
+
tensorflow==2.13.0
|