File size: 54,140 Bytes
56b1556 805e16c 1918157 56b1556 cfdbdb5 56b1556 e04d80e fba09af 56b1556 f48dc65 5938bb1 9b9ead9 56b1556 1bf681c e04d80e 9b9ead9 5938bb1 9b9ead9 1bf681c 9b9ead9 2534d3e 9b9ead9 71e2264 9b9ead9 71e2264 1918157 9b9ead9 5938bb1 1918157 e04d80e 56b1556 e04d80e 56b1556 880c8df 56b1556 e04d80e 56b1556 5cf40e5 56b1556 e04d80e 7e38559 e04d80e 7e38559 e04d80e 7e38559 56b1556 e04d80e 56b1556 7e38559 e04d80e e6d7498 56b1556 e04d80e 7e38559 56b1556 7e38559 1b887f5 e6d7498 fba09af 56b1556 fba09af 1918157 56b1556 e6d7498 56b1556 fba09af 56b1556 fba09af 56b1556 cfdbdb5 56b1556 70c3f35 56b1556 70c3f35 56b1556 fba09af 56b1556 fba09af 56b1556 e6d7498 56b1556 fba09af 9b9ead9 fba09af f7c59cc e6d7498 e04d80e e6d7498 cfdbdb5 fba09af cfdbdb5 56b1556 942999c 56b1556 fba09af 56b1556 1918157 56b1556 942999c 56b1556 cfdbdb5 56b1556 942999c 56b1556 942999c 56b1556 942999c 56b1556 942999c 56b1556 942999c 56b1556 1b887f5 942999c 56b1556 5cf40e5 56b1556 1918157 56b1556 1918157 56b1556 e04d80e 1b887f5 e04d80e 1b887f5 56b1556 1b887f5 1918157 1b887f5 cfdbdb5 1918157 cfdbdb5 1918157 cfdbdb5 1b887f5 e04d80e 1918157 e04d80e 1b887f5 cfdbdb5 1918157 cfdbdb5 1918157 cfdbdb5 56b1556 1b887f5 cfdbdb5 f7c59cc fba09af 56b1556 1b887f5 f7c59cc fba09af 56b1556 1b887f5 cfdbdb5 1918157 1b887f5 f7c59cc fba09af 56b1556 1918157 1b887f5 f7c59cc fba09af 56b1556 1918157 cfdbdb5 1918157 cfdbdb5 1918157 cfdbdb5 1918157 cfdbdb5 1918157 cfdbdb5 1918157 cfdbdb5 56b1556 cfdbdb5 f7c59cc fba09af 1b887f5 f7c59cc fba09af 56b1556 e04d80e 56b1556 a8891d5 56b1556 5cf40e5 fba09af 56b1556 5938bb1 e04d80e 56b1556 11f068c e04d80e 11f068c fba09af e04d80e 11f068c 56b1556 a8891d5 56b1556 a8891d5 5938bb1 a8891d5 56b1556 5938bb1 3addd99 56b1556 5938bb1 56b1556 e04d80e 56b1556 3addd99 56b1556 5938bb1 fba09af 56b1556 3addd99 56b1556 11f068c e04d80e 11f068c 3addd99 e04d80e fba09af e04d80e 11f068c 56b1556 e6d7498 56b1556 5938bb1 3addd99 5938bb1 3addd99 a8891d5 3addd99 5938bb1 3addd99 a8891d5 5938bb1 a8891d5 3addd99 a8891d5 3addd99 a8891d5 5938bb1 3addd99 5938bb1 3addd99 a8891d5 5938bb1 a8891d5 5938bb1 a8891d5 5938bb1 a8891d5 5938bb1 a8891d5 5938bb1 a8891d5 5938bb1 a8891d5 5938bb1 a8891d5 5938bb1 a8891d5 5938bb1 a8891d5 56b1556 5938bb1 56b1556 5cf40e5 56b1556 e6d7498 e04d80e 1918157 e04d80e fba09af e04d80e 1918157 e04d80e 1918157 e04d80e 1918157 e04d80e 1918157 e04d80e 1918157 e04d80e 1918157 e04d80e fba09af f7c59cc fba09af e04d80e 1918157 e04d80e 1918157 e04d80e 1918157 e04d80e fba09af f7c59cc fba09af e04d80e 5938bb1 a8891d5 e04d80e 5938bb1 e04d80e a8891d5 7e38559 1918157 11f068c e04d80e a8891d5 3288aa0 a8891d5 3288aa0 fca022b 3288aa0 a8891d5 3288aa0 e6d7498 5938bb1 e04d80e a8891d5 e04d80e fca022b 3288aa0 2838aec 1918157 e04d80e e6d7498 e04d80e e6d7498 a8891d5 7e38559 e6d7498 e04d80e a8891d5 5938bb1 a8891d5 5938bb1 a8891d5 5938bb1 a8891d5 5938bb1 56b1556 e6d7498 7e38559 a8891d5 56b1556 e6d7498 56b1556 5938bb1 805e16c 5938bb1 805e16c 5938bb1 805e16c 1918157 805e16c 1918157 805e16c 5938bb1 805e16c 1918157 5938bb1 805e16c 1918157 805e16c 1918157 805e16c 1918157 805e16c 1918157 805e16c 1918157 805e16c 56b1556 e6d7498 56b1556 e04d80e 805e16c e04d80e 805e16c e04d80e e6d7498 e04d80e 805e16c 5938bb1 805e16c e04d80e 7e38559 56b1556 fba09af 3addd99 fba09af 5938bb1 fba09af 5938bb1 fba09af 3addd99 fba09af 3addd99 fba09af 3addd99 fba09af 5938bb1 fba09af 3addd99 fba09af 3addd99 fba09af 3addd99 fba09af 3addd99 fba09af 3addd99 fba09af 3addd99 fba09af 3addd99 fba09af 3addd99 5938bb1 3addd99 fba09af 3addd99 fba09af 1bf681c 1b887f5 942999c 56b1556 e04d80e 3288aa0 e04d80e 942999c fba09af 3288aa0 56b1556 5938bb1 805e16c 5938bb1 805e16c 5938bb1 805e16c 5938bb1 805e16c 5938bb1 805e16c 5938bb1 805e16c 5938bb1 805e16c 5938bb1 805e16c 5938bb1 805e16c 5938bb1 1bf681c 805e16c 56b1556 805e16c 1bf681c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 |
import streamlit as st
from pathlib import Path
import pandas as pd
import altair as alt
import subprocess
import os
import numpy as np
import datetime
## Save results path
COMP_CACHE = Path("competition_cache/safe-challenge")
results_path = Path("competition_cache/cached_results")
TASKS = {
"video-challenge-pilot-config": ["source"],
"video-challenge-task-1-config": ["source"],
"video-challenge-task-2-config": ["source", "category"],
}
valid_splits = ["public", "private", "private_only"]
#####################################################################
## Data loading ##
#####################################################################
## Data loading
def get_max_score(group: pd.DataFrame, metric: str, use_selection: bool = True) -> pd.DataFrame:
if use_selection:
if group["selected"].any():
subset = group[group["selected"]]
else:
subset = group
else:
subset = group
max_idx = subset[metric].idxmax()
return group.loc[max_idx]
def select_rows(df, metric: str = "balanced_accuracy"):
def select(group):
if group["selected"].any():
return group[group["selected"]].loc[group[group["selected"]][metric].idxmax()]
else:
return group.loc[group[f"{metric}_public"].idxmax()]
return df.groupby("team", group_keys=False).apply(select)
@st.cache_data
def load_results(task_key, best_only, metric="balanced_accuracy",check_discrepancies = False):
to_return = {}
for split in valid_splits:
for score in TASKS.get(task_key):
file_path = f"{results_path}/{task_key}_{score}_{split}_score.csv"
if os.path.exists(file_path):
df = pd.read_csv(file_path)
public_df = pd.read_csv(f"{results_path}/{task_key}_{score}_public_score.csv")
if not best_only:
to_return[f"{split}_{score}_score"] = df
else:
if split == "public":
df = df.sort_values(["team", metric], ascending=False).reset_index(drop=True)
selected_max = (
df.copy()
.groupby("team", group_keys=False)
.apply(get_max_score, metric=metric, use_selection=True)
.sort_values([metric], ascending=False)
.set_index("team")
)
df = (
df.copy()
.groupby("team", group_keys=False)
.apply(get_max_score, metric=metric, use_selection=False)
.sort_values([metric], ascending=False)
.set_index("team")
)
if check_discrepancies:
to_return[f"desc_{split}_{score}_score"] = df[metric] - selected_max[metric]
else:
public_df = (
public_df.sort_values(["team", metric], ascending=False)
.reset_index(drop=True)
.set_index("submission_id")[metric]
)
tmp = df.set_index("submission_id").copy()
tmp = tmp.join(public_df, on=["submission_id"], rsuffix="_public")
tmp = tmp.reset_index()
df = select_rows(tmp,metric = metric)
df = df.sort_values([metric], ascending=False).set_index("team")
to_return[f"{split}_{score}_score"] = df
return to_return
@st.cache_data
def load_submission():
out = []
for task in TASKS:
data = pd.read_csv(f"{results_path}/{task}_source_submissions.csv")
data["task"] = task
out.append(data)
return pd.concat(out, ignore_index=True)
def get_updated_time(file="competition_cache/updated.txt"):
if os.path.exists(file):
return open(file).read()
else:
return "no time file found"
@st.cache_data
def get_volume():
subs = pd.concat(
[pd.read_csv(f"{results_path}/{task}_source_submissions.csv") for task in TASKS],
ignore_index=True,
)
subs["datetime"] = pd.DatetimeIndex(subs["datetime"])
subs["date"] = subs["datetime"].dt.date
subs = subs.groupby(["date", "status_reason"]).size().unstack().fillna(0).reset_index()
return subs
@st.cache_data
def make_heatmap(results, label="generated", symbol="π€"):
# Assuming df is your wide-format DataFrame (models as rows, datasets as columns)
df_long = results.set_index("team")
team_order = results.index.tolist()
df_long = df_long.loc[:, [c for c in df_long.columns if c.startswith(label) and "accuracy" not in c]]
df_long.columns = [c.replace(f"{label}_", "") for c in df_long.columns]
if "none" in df_long.columns:
df_long = df_long.drop(columns=["none"])
df_long = df_long.reset_index().melt(id_vars="team", var_name="source", value_name="acc")
# Base chart for rectangles
base = alt.Chart(df_long).encode(
x=alt.X("source:O", title="Source", axis=alt.Axis(orient="top", labelAngle=-60)),
y=alt.Y("team:O", title="Team", sort=team_order),
)
# Heatmap rectangles
heatmap = base.mark_rect().encode(
color=alt.Color("acc:Q", scale=alt.Scale(scheme="greens"), title=f"{label} Accuracy")
)
# Text labels
text = base.mark_text(baseline="middle", fontSize=16).encode(
text=alt.Text("acc:Q", format=".2f"),
color=alt.condition(
alt.datum.acc < 0.5, # you can tune this for readability
alt.value("black"),
alt.value("white"),
),
)
# Combine heatmap and text
chart = (heatmap + text).properties(width=600, height=500, title=f"Accuracy on {symbol} {label} sources heatmap")
return chart
@st.cache_data
def load_roc_file(task, submission_ids):
rocs = pd.read_csv(f"{results_path}/{task}_source_rocs.csv")
rocs = rocs[rocs["submission_id"].isin(submission_ids)]
return rocs
@st.cache_data
def get_unique_teams(teams):
return teams.unique().tolist()
@st.cache_data
def filter_teams(temp, selected_team):
mask = temp.loc[:, "team"].isin(selected_team)
return temp.loc[mask]
def make_roc_curves(task, submission_ids):
rocs = load_roc_file(task, submission_ids)
# if rocs["team"].nunique() > 1:
color_field = "team:N"
roc_chart = (
alt.Chart(rocs)
.mark_line()
.encode(
x="fpr", y="tpr", color=alt.Color(color_field, scale=alt.Scale(scheme=color_map)), detail="submission_id:N"
)
)
return roc_chart
#####################################################################
## Page definition ##
#####################################################################
## Set title
st.set_page_config(
page_title="Leaderboard",
initial_sidebar_state="collapsed",
layout="wide", # This makes the app use the full width of the screen
)
## Pull new results or toggle private public if you are an owner
with st.sidebar:
color_map = st.selectbox("colormap", ["paired", "category20", "category20b", "category20c", "set2", "set3"])
st.session_state["colormap"] = color_map
hf_token = os.getenv("HF_TOKEN")
st.session_state["hf_token"] = hf_token
password = st.text_input("Admin login:", type="password")
dataset_options = ["public"]
if password == hf_token:
dataset_options = ["public", "private", "private_only"]
if st.button("Pull New Results"):
with st.spinner("Pulling new results", show_time=True):
try:
process = subprocess.Popen(
["python3", "utils.py"],
text=True, # Decode stdout/stderr as text
)
st.info(f"Background task started with PID: {process.pid}")
process.wait()
process.kill()
if process.returncode != 0:
st.error("The process did not finish successfully.")
else:
st.success(f"PID {process.pid} finished!")
# If a user has the right perms, then this clears the cache
load_results.clear()
get_volume.clear()
load_submission.clear()
st.rerun()
except Exception as e:
st.error(f"Error starting background task: {e}")
## Initialize the dataset view state in session_state if it doesn't exist
if "dataset_view" not in st.session_state:
st.session_state.dataset_view = "public"
# Create the selectbox, ensuring the index is valid
current_view = st.session_state.dataset_view
valid_index = dataset_options.index(current_view) if current_view in dataset_options else 0
dataset_view = st.selectbox("Dataset View", options=dataset_options, index=valid_index, key="dataset_view")
# Display the current dataset view
if dataset_view == "private":
st.success("Showing **PRIVATE** scores (all data).")
# Visual indicator for admins in the UI
if password == hf_token:
st.info("π Admin View: You have access to all data")
# Initialize the top_n parameter if not in session_state
if "top_n_value" not in st.session_state:
st.session_state.top_n_value = 3
# Add a slider to select the number of top elements to average
top_n_value = st.slider(
"Mean of top N elements",
min_value=2,
max_value=10,
value=st.session_state.top_n_value,
step=1,
help="Calculate the mean of the top N elements in each column",
key="top_n_value",
)
st.session_state["top_n"] = top_n_value
elif dataset_view == "private_only":
st.success("Showing **PRIVATE ONLY** scores (excluding public data).")
# Visual indicator for admins in the UI
if password == hf_token:
st.info("π Admin View: You have access to private-only data")
# Initialize the top_n parameter if not in session_state
if "top_n_value" not in st.session_state:
st.session_state.top_n_value = 3
# Add a slider to select the number of top elements to average
top_n_value = st.slider(
"Mean of top N elements",
min_value=2,
max_value=10,
value=st.session_state.top_n_value,
step=1,
help="Calculate the mean of the top N elements in each column",
key="top_n_value",
)
st.session_state["top_n"] = top_n_value
else:
st.info("Showing **PUBLIC** scores.")
st.session_state["top_n"] = None
# Ensure only admin users can access private data
if dataset_view in ["private", "private_only"] and password == hf_token:
split = dataset_view
# Clear the cache when the dataset view changes
previous_view = st.session_state.get("previous_dataset_view")
if previous_view != dataset_view:
load_results.clear()
st.session_state["previous_dataset_view"] = dataset_view
else:
split = "public"
else:
split = "public"
st.session_state["split"] = split
def show_dataframe_w_format(df, format="compact", top_n=None):
"""
Display a dataframe with formatted columns. If in private mode and top_n is provided,
adds a row showing the mean of the top n values for each column.
Args:
df: Pandas dataframe to display
format: Format string for number columns (default: "compact")
top_n: Optional number of top values to average per column
"""
split = st.session_state.get("split", "public")
# Only add top-n mean row in private mode
if split in ["private", "private_only"] and top_n is not None and isinstance(top_n, int) and top_n > 0:
# Create a copy to avoid modifying the original
df_display = df.copy()
# Calculate the mean of top n values for each column
top_n_means = {}
for col in df.columns:
sorted_values = df[col] # .sort_values(ascending=False)
# Ensure we don't try to take more values than available
actual_n = min(top_n, len(sorted_values))
if actual_n > 0:
top_n_means[col] = sorted_values.iloc[:actual_n].mean()
else:
top_n_means[col] = float("nan")
# Add the mean row as a new row in the dataframe
top_n_means_df = pd.DataFrame([top_n_means], index=[f"Top-{top_n} Mean"])
df_display = pd.concat([top_n_means_df, df_display])
else:
df_display = df
column_config = {c: st.column_config.NumberColumn(c, format=format) for c in df_display.columns}
return st.dataframe(df_display, column_config=column_config)
@st.fragment
def show_leaderboard(task, score: str = "source"):
split = st.session_state.get("split", "public")
results = load_results(task, best_only=True)
source_split_map = {}
if split in ["private", "private_only"]:
_sol_df = pd.read_csv(COMP_CACHE / task / "solution-processed.csv")
pairs_df = _sol_df[["source_og", "split"]].drop_duplicates()
source_split_map = {x: y for x, y in zip(pairs_df["source_og"], pairs_df["split"])}
cols = [
"balanced_accuracy",
"generated_accuracy",
"real_accuracy",
# "pristine_accuracy",
"auc",
"total_time",
"datetime",
"fail_rate",
]
results_for_split_score = results[f"{split}_{score}_score"]
all_teams = get_unique_teams(results_for_split_score.index.to_series())
default = [t for t in all_teams if "test" not in t.lower()]
teams = st.multiselect("Teams", options=all_teams, default=default,key=f"ms_lead_{task}")
results_for_split_score = results_for_split_score.loc[results_for_split_score.index.isin(teams)]
column_config = {
"balanced_accuracy": st.column_config.NumberColumn(
"βοΈ Balanced Accruacy",
format="compact",
min_value=0,
# pinned=True,
max_value=1.0,
# width="small",
),
"generated_accuracy": st.column_config.NumberColumn(
"π€ True Postive Rate",
format="compact",
min_value=0,
# pinned=True,
max_value=1.0,
# width="small",
),
"real_accuracy": st.column_config.NumberColumn(
"π§βπ€ True Negative Rate",
format="compact",
min_value=0,
# pinned=True,
max_value=1.0,
# width="small",
),
"auc": st.column_config.NumberColumn(
"π AUC",
format="compact",
min_value=0,
# pinned=True,
max_value=1.0,
# width="small",
),
"total_time": st.column_config.NumberColumn(
"π Inference Time (s)",
format="compact",
# pinned=True,
# width="small",
),
"datetime": st.column_config.DatetimeColumn(
"ποΈ Submission Date",
format="YYYY-MM-DD",
# width="small",
),
"fail_rate": st.column_config.NumberColumn(
"β Fail Rate",
format="compact",
# width="small",
),
}
labels = {"real": "π§βπ€", "generated": "π€"}
for c in results_for_split_score.columns:
if "accuracy" in c:
continue
if any(p in c for p in ["generated", "real"]):
s = c.split("_")
pred = s[0]
source = " ".join(s[1:])
column_config[c] = st.column_config.NumberColumn(
labels[pred] + " " + source,
help=c,
format="compact",
min_value=0,
max_value=1.0,
)
"#### Summary"
st.dataframe(results_for_split_score.loc[:, cols], column_config=column_config)
f"##### Accuracy Breakdown by Source"
accuracy_types = {
"True positive/negative rate": 0,
"Conditional balanced accuracy": 1,
"AUC": 2,
}
granularity = st.radio(
"accuracy type",
list(accuracy_types.keys()),
key=f"granularity-{task}-{score}",
horizontal=True,
label_visibility="collapsed",
index=0,
)
## Subset the dataset
cols = [
c
for c in results_for_split_score.columns
if "generated_" in c and "accuracy" not in c and "conditional" not in c
]
col_names = [
(
f"π’ {c.replace('generated_', '')}"
if source_split_map.get(c.replace("generated_", ""), "public") == "public"
else f"π {c.replace('generated_', '')}"
)
for c in results_for_split_score.columns
if "generated_" in c and "accuracy" not in c and "conditional" not in c
]
gen_tmp = results_for_split_score.loc[:, cols].copy()
gen_tmp.columns = col_names
cols = [
c
for c in results_for_split_score.columns
if "real_" in c and "accuracy" not in c and "conditional" not in c
]
col_names = [
(
f"π’ {c.replace('real_', '')}"
if source_split_map.get(c.replace("real_", ""), "public") == "public"
else f"π {c.replace('real_', '')}"
)
for c in results_for_split_score.columns
if "real_" in c and "accuracy" not in c and "conditional" not in c
]
real_tmp = results_for_split_score.loc[:, cols].copy()
real_tmp.columns = col_names
## Check cases
if accuracy_types[granularity] == 0:
"#### π€ True Positive Rate | Generated Source"
# st.dataframe(gen_tmp, column_config=column_config)
top_n = st.session_state.get("top_n", None)
show_dataframe_w_format(gen_tmp, top_n=top_n)
"#### π§βπ€ True Negative Rate | Real Source"
# st.dataframe(real_tmp, column_config=column_config)
show_dataframe_w_format(real_tmp, top_n=top_n)
elif accuracy_types[granularity] == 1:
"#### π€ Balanced Accuracy | Generated Source"
tnr = results_for_split_score.loc[:, ["real_accuracy"]]
gen_tmp[:] = (gen_tmp.values + tnr.values) / 2.0
# st.dataframe(gen_tmp, column_config=column_config)
top_n = st.session_state.get("top_n", None)
show_dataframe_w_format(gen_tmp, top_n=top_n)
"#### π§βπ€ Balanced Accuracy | Real Source"
tpr = results_for_split_score.loc[:, ["generated_accuracy"]]
real_tmp[:] = (real_tmp.values + tpr.values) / 2.0
# st.dataframe(real_tmp, column_config=column_config)
show_dataframe_w_format(real_tmp, top_n=top_n)
else:
cols = [c for c in results_for_split_score.columns if "generated_conditional_auc" in c]
col_names = [
(
f"π’ {c.replace('generated_conditional_auc_', '')}"
if source_split_map.get(c.replace("generated_conditional_auc_", ""), "public") == "public"
else f"π {c.replace('generated_conditional_auc_', '')}"
)
for c in results_for_split_score.columns
if "generated_conditional_auc_" in c
]
gen_tmp = results_for_split_score.loc[:, cols].copy()
gen_tmp.columns = col_names
cols = [c for c in results_for_split_score.columns if "real_conditional_auc" in c]
col_names = [
(
f"π’ {c.replace('real_conditional_auc_', '')}"
if source_split_map.get(c.replace("real_conditional_auc_", ""), "public") == "public"
else f"π {c.replace('real_conditional_auc_', '')}"
)
for c in results_for_split_score.columns
if "real_conditional_auc" in c
]
real_tmp = results_for_split_score.loc[:, cols].copy()
real_tmp.columns = col_names
"#### π€ Conditional AUC | Generated Source"
# st.dataframe(gen_tmp, column_config=column_config)
top_n = st.session_state.get("top_n", None)
show_dataframe_w_format(gen_tmp, top_n=top_n)
"#### π§βπ€ Conditional AUC | Real Source"
# st.dataframe(real_tmp, column_config=column_config)
show_dataframe_w_format(real_tmp, top_n=top_n)
def make_roc(results, show_text=False):
results["FA"] = 1.0 - results["real_accuracy"]
chart = (
alt.Chart(results)
.mark_point(filled=True)
.encode(
x=alt.X("FA:Q", title="π§βπ€ False Positive Rate", scale=alt.Scale(domain=[0.0, 1.0])),
y=alt.Y("generated_accuracy:Q", title="π€ True Positive Rate", scale=alt.Scale(domain=[0.0, 1.0])),
color=alt.Color("team:N", scale=alt.Scale(scheme=color_map)), # Color by categorical field
size=alt.Size(
"total_time:Q", title="π Inference Time", scale=alt.Scale(rangeMin=100)
), # Size by quantitative field
shape=alt.Shape("split:N", title="Split"),
detail=["submission_id", "auc", "balanced_accuracy"],
)
.properties(width=400, height=400, title="Detection vs False Alarm vs Inference Time")
)
if show_text:
text = (
alt.Chart(results)
.mark_text(
align="right",
fontSize=14,
dx=-5, # shift text to right of point
dy=-5, # shift text slightly up
)
.encode(
x=alt.X("FA:Q", title="π§βπ€ False Positive Rate", scale=alt.Scale(domain=[0, 1])),
y=alt.Y("generated_accuracy:Q", title="π€ True Positive Rate", scale=alt.Scale(domain=[0, 1])),
color=alt.Color("team:N", scale=alt.Scale(scheme=color_map)), # Color by categorical field
text="team",
)
)
chart = chart + text
diag_line = (
alt.Chart(pd.DataFrame(dict(tpr=[0, 1], fpr=[0, 1])))
.mark_line(color="lightgray", strokeDash=[8, 4], size=1)
.encode(x="fpr", y="tpr")
)
diag_line2 = (
alt.Chart(pd.DataFrame(dict(tpr=[1, 0], fpr=[0, 1])))
.mark_line(color="lightblue", strokeDash=[8, 4], size=1)
.encode(x="fpr", y="tpr")
)
return chart + diag_line + diag_line2
def make_acc(results, show_text=False, metric_spec=("balanced_accuracy", "Balanced Accuracy")):
metric, metric_title = metric_spec
results = results.loc[results["total_time"] >= 0]
chart = (
alt.Chart(results)
.mark_point(size=200, filled=True)
.encode(
x=alt.X("total_time:Q", title="π Inference Time (sec)", scale=alt.Scale(type="log", domain=[100, 100000])),
y=alt.Y(
f"{metric}:Q",
title=metric_title,
scale=alt.Scale(domain=[0.4, 1]),
),
shape=alt.Shape("split:N", title="Split"),
color=alt.Color(
"team:N", scale=alt.Scale(scheme=color_map)
), # Color by categorical field # Size by quantitative field
)
.properties(width=400, height=400, title=f"Inference Time vs {metric_title}")
)
if show_text:
text = (
alt.Chart(results)
.mark_text(
align="right",
dx=-5, # shift text to right of point
dy=-5, # shift text slightly up
fontSize=14,
)
.encode(
x=alt.X(
"total_time:Q", title="π Inference Time (sec)", scale=alt.Scale(type="log", domain=[100, 100000])
),
y=alt.Y(
f"{metric}:Q",
title=metric_title,
scale=alt.Scale(domain=[0.4, 1]),
),
color=alt.Color(
"team:N", scale=alt.Scale(scheme=color_map)
), # Color by categorical field # Size by quantitative field
text="team",
)
)
chart = chart + text
diag_line = (
alt.Chart(pd.DataFrame(dict(t=[100, 100000], y=[0.5, 0.5])))
.mark_line(color="lightgray", strokeDash=[8, 4])
.encode(x="t", y="y")
)
return chart + diag_line
def make_acc_vs_auc(results, show_text=False, flip=False):
# results = results.loc[results["total_time"] >= 0]
chart = (
alt.Chart(results)
.mark_point(size=200, filled=True)
.encode(
x=alt.X("auc:Q", title="Area Under Curve", scale=alt.Scale(domain=[0.4, 1])),
y=alt.Y(
"balanced_accuracy:Q",
title="Balanced Accuracy",
scale=alt.Scale(domain=[0.4, 1]),
),
shape=alt.Shape("split:N", title="Split"),
color=alt.Color(
"team:N", scale=alt.Scale(scheme=color_map)
), # Color by categorical field # Size by quantitative field
)
.properties(width=400, height=400, title="AUC vs Balanced Accuracy")
)
if flip:
chart = chart.encode(x=chart.encoding.y, y=chart.encoding.x)
if show_text:
text = (
alt.Chart(results)
.mark_text(
align="right",
dx=-5, # shift text to right of point
dy=-5, # shift text slightly up
fontSize=14,
)
.encode(
x=alt.X("auc:Q", title="Area Under Curve", scale=alt.Scale(domain=[0.4, 1])),
y=alt.Y(
"balanced_accuracy:Q",
title="Balanced Accuracy",
scale=alt.Scale(domain=[0.4, 1]),
),
color=alt.Color(
"team:N", scale=alt.Scale(scheme=color_map)
), # Color by categorical field # Size by quantitative field
text="team",
)
)
if flip:
text = text.encode(x=text.encoding.y, y=text.encoding.x)
chart = chart + text
diag_line = (
alt.Chart(pd.DataFrame(dict(x=[0.4, 1.0], y=[0.4, 1.0])))
.mark_line(color="lightgray", strokeDash=[8, 4])
.encode(x="x", y="y")
)
if flip:
diag_line = diag_line.encode(x=diag_line.encoding.y, y=diag_line.encoding.x)
full_chart = chart + diag_line
return full_chart
def make_vs_public(results, show_text=False, other_split=None):
# results = results.loc[results["total_time"] >= 0]
# results.groupby()
chart = (
alt.Chart(results)
.mark_point(size=200, filled=True)
.encode(
x=alt.X("public:Q", title="public", scale=alt.Scale(domain=[0.4, 1])),
y=alt.Y(f"{other_split}:Q", title=f"{other_split}", scale=alt.Scale(domain=[0.4, 1])),
color=alt.Color(
"team:N", scale=alt.Scale(scheme=color_map)
), # Color by categorical field # Size by quantitative field
)
.properties(width=400, height=400, title=f"public vs {other_split}")
)
if show_text:
text = (
alt.Chart(results)
.mark_text(
align="right",
dx=-5, # shift text to right of point
dy=-5, # shift text slightly up
fontSize=14,
)
.encode(
x=alt.X("public:Q", title="public", scale=alt.Scale(domain=[0.4, 1])),
y=alt.Y(f"{other_split}:Q", title=f"{other_split}", scale=alt.Scale(domain=[0.4, 1])),
color=alt.Color(
"team:N", scale=alt.Scale(scheme=color_map)
), # Color by categorical field # Size by quantitative field
text="team",
)
)
chart = chart + text
diag_line = (
alt.Chart(pd.DataFrame(dict(x=[0.4, 1.0], y=[0.4, 1.0])))
.mark_line(color="lightgray", strokeDash=[8, 4])
.encode(x="x", y="y")
)
full_chart = chart + diag_line
return full_chart
def get_heatmaps(temp):
h1 = make_heatmap(temp, "generated", symbol="π€")
h2 = make_heatmap(temp, "real", symbol="π§βπ€")
st.altair_chart(h1, use_container_width=True)
st.altair_chart(h2, use_container_width=True)
if temp.columns.str.contains("aug", case=False).any():
h3 = make_heatmap(temp, "aug", symbol="π οΈ")
st.altair_chart(h3, use_container_width=True)
@st.fragment
def show_augmentations(task, score):
split = st.session_state.get("split", "public")
results = load_results(task, best_only=True)
results_for_split_score = results[f"{split}_{score}_score"]
all_teams = get_unique_teams(results_for_split_score.index.to_series())
teams = st.multiselect("Teams", options=all_teams, default=[t for t in all_teams if "test" not in t.lower()],key=f"ms_aug_{task}")
results_for_split_score = results_for_split_score.loc[results_for_split_score.index.isin(teams)]
f"##### Accuracy Breakdown by Category"
accuracy_types = {
"Accuracy": 0,
"AUC": 1,
}
# Create a row with two columns for controls
col1, col2 = st.columns([0.1, 0.9])
with col1:
granularity = st.radio(
"accuracy type",
list(accuracy_types.keys()),
key=f"granularity-{task}-{score}",
horizontal=True,
label_visibility="collapsed",
index=0,
)
show_deltas = False
if split in ["private", "private_only"]:
with col2:
# Add toggle for showing deltas from "none" column
show_deltas = st.toggle(
"Show deltas from 'none' (higher values mean 'none' was **lower**)",
value=False,
key=f"deltas-{task}-{score}",
)
## Check cases
if accuracy_types[granularity] == 0:
"#### Balanced Accuracy"
gen_cols = [
c
for c in results_for_split_score.columns
if "generated_" in c and "accuracy" not in c and "conditional" not in c
]
gen_tmp = results_for_split_score.loc[:, gen_cols].copy()
gen_tmp.columns = [
c.replace("generated_", "")
for c in results_for_split_score.columns
if "generated_" in c and "accuracy" not in c and "conditional" not in c
]
real_cols = [
c
for c in results_for_split_score.columns
if "real_" in c and "accuracy" not in c and "conditional" not in c
]
real_tmp = results_for_split_score.loc[:, real_cols].copy()
real_tmp.columns = [
c.replace("real_", "")
for c in results_for_split_score.columns
if "real_" in c and "accuracy" not in c and "conditional" not in c
]
tmp = (gen_tmp + real_tmp) / 2.0
# If toggle is on and "none" column exists, calculate deltas from "none" column
if show_deltas and "none" in tmp.columns:
# Get the "none" column values
none_values = tmp["none"].copy()
# Calculate deltas: none - current_column
for col in tmp.columns:
if col != "none":
tmp[col] = -none_values + tmp[col]
# st.dataframe(tmp)
top_n = st.session_state.get("top_n", None)
show_dataframe_w_format(tmp, top_n=top_n)
else:
cols = [c for c in results_for_split_score.columns if "conditional_auc" in c]
col_names = [
c.replace("conditional_auc_", "")
for c in results_for_split_score.columns
if "conditional_auc" in c
]
tmp = results_for_split_score.loc[:, cols].copy()
tmp.columns = col_names
"#### Conditional AUC"
# If toggle is on and "none" column exists, calculate deltas from "none" column
if show_deltas and "none" in tmp.columns:
# Get the "none" column values
none_values = tmp["none"].copy()
# Calculate deltas: none - current_column
for col in tmp.columns:
if col != "none":
tmp[col] = -none_values + tmp[col]
# st.dataframe(tmp)
top_n = st.session_state.get("top_n", None)
show_dataframe_w_format(tmp, top_n=top_n)
@st.fragment
def show_charts(task, score="source"):
show_auc = st.toggle("Show Best w.r.t. AUC", value=False, key=f"toggle auc {task}")
metric = "auc" if show_auc else "balanced_accuracy"
split = st.session_state.get("split", "public")
hf_token = st.session_state.get("hf_token", None)
results = load_results(task, best_only=True, metric=metric)
temp = results[f"{split}_source_score"].reset_index()
temp_public = results[f"public_source_score"].reset_index()
temp["split"] = split
temp_public["split"] = "public"
teams = get_unique_teams(temp["team"])
default = [t for t in teams if "test" not in t.lower()]
best_only = True
compare = False
if split != "public":
b1, b2 = st.columns([0.2, 0.8])
with b1:
best_only = st.toggle("Best Only", value=True, key=f"best only {task} {score} {split}")
full_curves = st.toggle("Full curve", value=True, key=f"all curves {task}")
# compare = st.toggle(f"Compare vs Public",value=False, key=f"compare {task}")
if not best_only:
results = load_results(task, best_only=best_only, metric=metric)
temp = results[f"{split}_source_score"].reset_index()
temp_public = results["public_source_score"].reset_index()
# selected_team = st.pills(
# "Team", ["ALL"] + teams, key=f"teams {task} 1", default=["ALL"], selection_mode="multi"
# )
with b2:
# selected_team = st.pills(
# "Team", ["ALL"] + teams, key=f"teams {task} 2", default=default, selection_mode="multi"
# )
default = [t for t in teams if "test" not in t.lower()]
selected_team = st.multiselect("Teams", options=teams, default=default,key=f"charts_{task}")
if selected_team is None or len(selected_team) == 0:
return
if "ALL" in selected_team:
selected_team = ["ALL"]
if "ALL" not in selected_team:
temp = filter_teams(temp, selected_team)
temp_public = filter_teams(temp_public, selected_team)
# with st.spinner("making plots...", show_time=True):
if compare:
temp["split"] = split
temp_public["split"] = "public"
temp = pd.concat([temp, temp_public], ignore_index=True)
metric = "balanced_accuracy" if not show_auc else "auc"
temp_vs_public = temp.set_index(["team", "submission_id", "split"])[metric].unstack().reset_index()
# st.write(temp_vs_public)
public_vs_private = make_vs_public(temp_vs_public, show_text=best_only, other_split=split)
# st.write(temp)
roc_scatter = make_roc(temp, show_text=best_only & (not compare))
acc_vs_time = make_acc(
temp,
show_text=best_only & (not compare),
metric_spec=("auc", "Area Under Curve") if show_auc else ("balanced_accuracy", "Balanced Accuracy"),
)
acc_vs_auc = make_acc_vs_auc(temp, show_text=best_only & (not compare), flip=show_auc)
if split == "private" and hf_token is not None:
if full_curves:
roc_scatter = make_roc_curves(task, temp["submission_id"].values.tolist()) + roc_scatter
st.altair_chart(roc_scatter | acc_vs_time | acc_vs_auc, use_container_width=False)
if compare:
st.altair_chart(public_vs_private, use_container_width=False)
st.info(f"loading {temp['submission_id'].nunique()} submissions")
@st.cache_data
def compute_running_max(result_df, teams, metric):
# Group by team and sort by datetime
result_df = result_df.copy()
result_df = result_df.loc[result_df["team"].isin(teams)]
result_df["datetime"] = pd.to_datetime(result_df["datetime"])
return (
result_df.groupby("team")
.apply(lambda a: a.sort_values("datetime").set_index("datetime")[metric].cummax())
.reset_index()
)
@st.fragment
def show_timeline(task, score="source"):
split = st.session_state.get("split", "public")
hf_token = st.session_state.get("hf_token", None)
results = load_results(task, best_only=False)
temp = results[f"{split}_source_score"].reset_index()
all_teams = get_unique_teams(temp["team"])
all_teams = list(filter(lambda a: a!="Baseline",all_teams))
default = [t for t in all_teams if ("test" not in t.lower())]
teams = st.multiselect("Teams", options=all_teams, default=default)
metric = st.selectbox("Metric", ["auc", "balanced_accuracy"], key=f"time {task}")
baseline_val = temp.query("team=='Baseline'")[metric].max()
df = compute_running_max(temp, teams, metric).dropna()
# team_best = df.groupby("team")[metric].max().sort_values(ascending = False)
team_best = df.sort_values([metric,"datetime"],ascending = False).drop_duplicates(["team"])
team_order = team_best["team"].tolist() + ["Baseline"]
random_guess = (
alt.Chart(pd.DataFrame({"datetime": [df["datetime"].min(), df["datetime"].max()], metric: [0.5, 0.5]}))
.mark_line(strokeDash=[4, 4], color="grey", strokeWidth=2)
.encode(
x="datetime:T",
y=f"{metric}:Q",
)
)
# st.write(st.session_state)
baseline_chart = (
alt.Chart(pd.DataFrame({"datetime": [df["datetime"].min(), df["datetime"].max()], "team": "Baseline", metric: [baseline_val,baseline_val]}))
.mark_line(strokeDash=[8, 8], color="darkgray", strokeWidth=2)
.encode(
x="datetime:T",
y=f"{metric}:Q",
color=alt.Color("team:N", scale=alt.Scale(scheme=st.session_state.get("colormap", "paired")),sort=team_order),
)
)
# Create main chart
task_chart = (
alt.Chart(df)
.mark_line(point=True, interpolate='step-after')
.encode(
x=alt.X(
"datetime:T",
title="Submission Date",
),
y=alt.Y(f"{metric}:Q", scale=alt.Scale(domain=[0.5, 1.0])),
color=alt.Color("team:N", scale=alt.Scale(scheme=st.session_state.get("colormap", "paired")),
sort=team_order),
)
.properties(width=800, height=500, title="Best Performance Over Time (Original Content)")
.interactive()
)
if st.checkbox("Show Labels",value=True,key = f"{task} check show timeline"):
team_best.loc[len(team_best)] = {"team":"Baseline", metric:baseline_val, "datetime": df["datetime"].max()}
# st.write(team_best)
text_chart = (
alt.Chart(team_best)
.mark_text(
align="left",
fontSize=14,
dx=5, # shift text to right of point
dy=-5, # shift text slightly up
)
.encode(
x=alt.X(
"datetime:T",
title="Submission Date",
scale = alt.Scale(domain=[df["datetime"].min(),
df["datetime"].max() + datetime.timedelta(days = 4)]),
),
y=alt.Y(f"{metric}:Q", scale=alt.Scale(domain=[0.5, 1.0])),
color=alt.Color("team:N", scale=alt.Scale(scheme=st.session_state.get("colormap", "paired")),
sort=team_order),
text="team",
)
)
# Combine charts and display
st.altair_chart((task_chart +baseline_chart+text_chart).configure_legend(disable=True), use_container_width=True)
# st.altair_chart(task_chart, use_container_width=True)
def make_plots_for_task(task):
if len(TASKS.get(task)) > 1:
t1, t2, t3, t4 = st.tabs(["Tables", "Charts", "Timeline", "Augmentations"])
else:
t1, t2, t3 = st.tabs(["Tables", "Charts", "Timeline"])
t4 = None
with t1:
show_leaderboard(task)
with t2:
show_charts(task, score="source")
with t3:
split = st.session_state.get("split", "public")
if split != "public":
show_timeline(task, score="source")
else:
st.info(f"not available in {split} in mode")
if t4 is not None:
with t4:
show_augmentations(task, score="category")
updated = get_updated_time()
st.markdown(updated)
@st.fragment
def show_task_comparison():
"""Show summary tables for Task 1 and Task 2 side by side."""
split = st.session_state.get("split", "public")
color_map_choice = st.session_state.get("colormap", "paired")
task1_key = list(TASKS.keys())[1] # video-challenge-task-1-config
task2_key = list(TASKS.keys())[2] # video-challenge-task-2-config
task1_results = load_results(task1_key, best_only=True)
task2_results = load_results(task2_key, best_only=True)
cols = ["balanced_accuracy", "generated_accuracy", "real_accuracy", "auc", "total_time", "datetime", "fail_rate"]
column_config = {
"balanced_accuracy": st.column_config.NumberColumn(
"βοΈ Balanced Accuracy",
format="compact",
min_value=0,
max_value=1.0,
),
"generated_accuracy": st.column_config.NumberColumn(
"π€ True Positive Rate",
format="compact",
min_value=0,
max_value=1.0,
),
"real_accuracy": st.column_config.NumberColumn(
"π§βπ€ True Negative Rate",
format="compact",
min_value=0,
max_value=1.0,
),
"auc": st.column_config.NumberColumn(
"π AUC",
format="compact",
min_value=0,
max_value=1.0,
),
"total_time": st.column_config.NumberColumn(
"π Inference Time (s)",
format="compact",
),
"datetime": st.column_config.DatetimeColumn(
"ποΈ Submission Date",
format="YYYY-MM-DD",
),
"fail_rate": st.column_config.NumberColumn(
"β Fail Rate",
format="compact",
),
"task1_balanced_accuracy": st.column_config.NumberColumn(
"βοΈ Task 1 Balanced Accuracy",
format="compact",
min_value=0,
max_value=1.0,
),
"task2_balanced_accuracy": st.column_config.NumberColumn(
"βοΈ Task 2 Balanced Accuracy",
format="compact",
min_value=0,
max_value=1.0,
),
"difference": st.column_config.NumberColumn(
"βοΈ Difference (T1-T2)",
format="compact",
),
"percent_change": st.column_config.NumberColumn(
"% Change",
format="+.2%",
),
}
# Create tabs for different views
tables_tab, charts_tab = st.tabs(["Tables", "Charts"])
with tables_tab:
# Create two columns for side-by-side tables
st.subheader("Performance Comparison: Task 1 vs Task 2")
col1, col2 = st.columns(2)
with col1:
st.subheader("Task 1: Original Content")
st.dataframe(
task1_results[f"{split}_source_score"].loc[:, cols],
column_config=column_config,
use_container_width=True,
)
with col2:
st.subheader("Task 2: Post-processed Content")
st.dataframe(
task2_results[f"{split}_source_score"].loc[:, cols],
column_config=column_config,
use_container_width=True,
)
# Add a section for comparison of task performance differences
st.subheader("Performance Analysis")
st.markdown(
"""
Performance comparison between Task 1 (original content) and
Task 2 (post-processed content). A positive difference indicates degraded performance
on post-processed content.
"""
)
# Get the datasets for both tasks
task1_df = task1_results[f"{split}_source_score"].reset_index()
task2_df = task2_results[f"{split}_source_score"].reset_index()
# Create a combined dataframe for analysis
common_teams = set(task1_df["team"]) & set(task2_df["team"])
if common_teams:
# Filter to teams that appear in both tasks
task1_filtered = task1_df[task1_df["team"].isin(common_teams)]
task2_filtered = task2_df[task2_df["team"].isin(common_teams)]
# Create a comparison dataframe
comparison_df = pd.DataFrame(
{
"team": list(common_teams),
"task1_balanced_accuracy": [
task1_filtered[task1_filtered["team"] == team]["balanced_accuracy"].values[0]
for team in common_teams
],
"task2_balanced_accuracy": [
task2_filtered[task2_filtered["team"] == team]["balanced_accuracy"].values[0]
for team in common_teams
],
}
)
# Calculate differences and percentage changes
comparison_df["difference"] = (
comparison_df["task1_balanced_accuracy"] - comparison_df["task2_balanced_accuracy"]
)
comparison_df["percent_change"] = comparison_df["difference"] / comparison_df["task1_balanced_accuracy"]
# Sort by the absolute difference (to show biggest performance changes first)
comparison_df = (
comparison_df.sort_values(by="difference", ascending=False).reset_index(drop=True).set_index("team")
)
# Display the comparison table
show_dataframe_w_format(comparison_df, top_n=0)
else:
st.warning("No common teams found across both tasks.")
with charts_tab:
st.subheader("Team Performance Across Tasks")
metric = st.selectbox("Metric", ["balanced_accuracy", "auc"])
# Get the datasets for both tasks if not already done
if "task1_df" not in locals():
task1_df = task1_results[f"{split}_source_score"].reset_index()
task2_df = task2_results[f"{split}_source_score"].reset_index()
common_teams = set(task1_df["team"]) & set(task2_df["team"])
if common_teams:
# Prepare data for the plot
plot_data = []
for team in common_teams:
# Get team's balanced accuracy for each task
task1_acc = task1_df[task1_df["team"] == team][metric].values[0]
task2_acc = task2_df[task2_df["team"] == team][metric].values[0]
# Add points for Task 1
plot_data.append({"team": team, "task": "Task 1", metric: task1_acc})
# Add points for Task 2
plot_data.append({"team": team, "task": "Task 2", metric: task2_acc})
plot_df = pd.DataFrame(plot_data).set_index(["team", "task"])[metric].unstack().reset_index()
# st.write(plot_df)
chart = (
alt.Chart(plot_df)
.mark_circle(size=200)
.encode(
x=alt.X("Task 1:Q", title=f"Task 1 {metric}", scale=alt.Scale(domain=[0.4, 1])),
y=alt.Y("Task 2:Q", title=f"Task 2 {metric}", scale=alt.Scale(domain=[0.4, 1])),
color=alt.Color(
"team:N", scale=alt.Scale(scheme=color_map)
), # Color by categorical field # Size by quantitative field
)
.properties(width=600, height=600, title="AUC vs Balanced Accuracy")
)
# if show_text:
text = (
alt.Chart(plot_df)
.mark_text(
align="right",
dx=-5, # shift text to right of point
dy=-5, # shift text slightly up
fontSize=14,
)
.encode(
x=alt.X("Task 1:Q", title=f"Task 1 {metric}", scale=alt.Scale(domain=[0.4, 1])),
y=alt.Y("Task 2:Q", title=f"Task 2 {metric}", scale=alt.Scale(domain=[0.4, 1])),
color=alt.Color(
"team:N", scale=alt.Scale(scheme=color_map)
), # Color by categorical field # Size by quantitative field
text="team",
)
)
chart = chart + text
diag_line = (
alt.Chart(pd.DataFrame(dict(x=[0.4, 1.0], y=[0.4, 1.0])))
.mark_line(color="lightgray", strokeDash=[8, 4])
.encode(x="x", y="y")
)
st.altair_chart(chart + diag_line, use_container_width=False)
# Create line chart connecting team performances
# lines = (
# alt.Chart(plot_df)
# .mark_line(point=alt.OverlayMarkDef(filled=True, size=100), strokeDash=[4, 2], strokeWidth=2)
# .encode(
# x=alt.X("task:N", title="Task", sort=["Task 1", "Task 2"]),
# y=alt.Y("balanced_accuracy:Q", title="Balanced Accuracy", scale=alt.Scale(domain=[0.4, 1.0])),
# color=alt.Color(
# "team:N", scale=alt.Scale(scheme=color_map_choice), legend=alt.Legend(title="Teams")
# ),
# tooltip=["team:N", "task:N", "balanced_accuracy:Q"],
# )
# .properties(width=700, height=500, title="Performance Changes Across Tasks")
# )
# st.altair_chart(lines, use_container_width=False)
else:
st.warning("No common teams found across both tasks.")
t1, t2, tp, comparison_tab, volume_tab, all_submission_tab, san_check = st.tabs(
["**Task 1**", "**Task 2**", "**Pilot Task**", "**Compare Tasks**", "**Submission Volume**", "**All Submissions**","**Sanity Check**"]
)
with t1:
"*Detection of Synthetic Video Content. Video files are unmodified from the original output from the models or the real sources.*"
make_plots_for_task(list(TASKS.keys())[1])
with t2:
"*Detection of Post-processed Synthetic Video Content. A subset of Task 1 data files are modified with standard post-processing techniques (compression, resizing, etc).*"
make_plots_for_task(list(TASKS.keys())[2])
with tp:
"*Detection of Synthetic Video Content. Video files are unmodified from the original output from the models or the real sources.*"
make_plots_for_task(list(TASKS.keys())[0])
if split in ["private", "private_only"]:
with comparison_tab:
"**Task 1 to Task 2 performance comparison.**"
show_task_comparison()
with volume_tab:
subs = get_volume()
status_lookup = "QUEUED,PROCESSING,SUCCESS,FAILED".split(",")
found_columns = subs.columns.values.tolist()
status_lookup = list(set(status_lookup) & set(found_columns))
st.bar_chart(subs, x="date", y=status_lookup, stack=True)
total_submissions = int(subs.loc[:, status_lookup].fillna(0).values.sum())
st.metric("Total Submissions", value=total_submissions)
st.metric("Duration", f'{(subs["date"].max() - subs["date"].min()).days} days')
@st.fragment
def show_all_submissions():
show_all = st.toggle("Show All Columns", value=False)
data = load_submission()
fields = ["task", "team", "status_reason"]
field_values = {f: data[f].unique().tolist() for f in fields}
selected_fields = {}
for f, v in field_values.items():
selected_fields[f] = st.multiselect(f"Select {f} to Display", v, default=v)
mask = np.ones(len(data)).astype(bool)
for fs, vs in selected_fields.items():
mask &= data[fs].isin(vs)
data = data.loc[mask]
search_str = st.text_input("search", value="")
if search_str != "":
mask_search = (
data.select_dtypes(include=["object"])
.apply(lambda x: x.str.contains(search_str, case=False, na=False))
.any(axis=1)
)
data = data.loc[mask_search]
if not show_all:
columns_to_show = "task,team,datetime,status_reason,submission_repo,submission_id,space_id".split(",")
data = data.loc[:, columns_to_show]
data = data.sort_values("datetime", ascending=False)
# st.write(",".join(data.columns))
st.dataframe(data, hide_index=True)
@st.fragment
def show_san_check():
for task in list(TASKS.keys()):
f"## {task}"
out = load_results(task,best_only=True, metric="balanced_accuracy",check_discrepancies=True)
for k,v in out.items():
if k.startswith("desc"):
f"### {k}"
st.write(v)
if split == "private":
with all_submission_tab:
show_all_submissions()
with san_check:
show_san_check()
|