File size: 6,603 Bytes
5cf40e5 add2842 56b1556 5cf40e5 56b1556 5cf40e5 add2842 e04d80e add2842 e04d80e add2842 e04d80e add2842 56b1556 5cf40e5 56b1556 5cf40e5 56b1556 5cf40e5 56b1556 5cf40e5 8362467 5cf40e5 e04d80e add2842 e04d80e 5cf40e5 add2842 5cf40e5 8362467 56b1556 5cf40e5 56b1556 5cf40e5 56b1556 5cf40e5 add2842 5cf40e5 56b1556 5cf40e5 56b1556 e04d80e 5cf40e5 e04d80e 5cf40e5 56b1556 e04d80e 5cf40e5 1b887f5 5cf40e5 1b887f5 5cf40e5 56b1556 5cf40e5 56b1556 5cf40e5 56b1556 fba09af 56b1556 fba09af 5cf40e5 fba09af 8362467 5cf40e5 fba09af e04d80e 5cf40e5 56b1556 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
from collections import defaultdict
import traceback
from huggingface_hub import hf_hub_download
import pandas as pd
from sklearn.metrics import roc_auc_score, roc_curve
from typing import Any, Dict
import numpy as np
def check_if_score_ok(df):
if df["score"].min() >= 0.5 and df["score"].max() <= 1.0:
print("assuming max prob is reported... recomputing")
## assume in this case they are reporting max P(real), P(generated)
pred_generated = df["submission_pred"] == "generated"
pred_real = df["submission_pred"] == "real"
df.loc[pred_real, "score"] = 1.0 - df.loc[pred_real, "score"]
not_predicted = ~(pred_generated | pred_real)
if not_predicted.any():
df.loc[not_predicted, "score"] = np.random.rand(not_predicted.sum())
return df
def compute_auc(df: pd.DataFrame) -> float:
try:
isna = df["score"].isna()
## All nans
if isna.all():
return float("nan")
df = df.loc[~isna].copy()
ytrue = df["pred"] == "generated"
## Only one class
if ytrue.all() or (~ytrue).all():
return float("nan")
df = check_if_score_ok(df)
return roc_auc_score(ytrue, df["score"])
except Exception as e:
print(f"AUC exception: {e}")
# traceback.print_exc()
return float("nan")
def compute_roc_curve(df: pd.DataFrame, keep_every: int = 10) -> Dict[Any, Any]:
try:
isna = df["score"].isna()
## All nans
if isna.all():
return {"fpr": [], "tpr": [], "threshold": []}
df = df.loc[~isna]
df = check_if_score_ok(df)
fpr, tpr, threshold = roc_curve(df["pred"] == "generated", df["score"])
if len(fpr) < keep_every:
return {"fpr": fpr.tolist(), "tpr": tpr.tolist(), "threshold": threshold.tolist()}
# Sample every keep_every
return {
"fpr": fpr.tolist()[::keep_every],
"tpr": tpr.tolist()[::keep_every],
"threshold": threshold.tolist()[::keep_every],
}
except Exception as e:
print(f"ROC exception: {e}")
return {"fpr": [], "tpr": [], "threshold": []}
def compute_metrics(df: pd.DataFrame, score_name: str, use_all: bool) -> Dict[Any, Any]:
metrics = defaultdict(dict)
## Accuracies
df["correct"] = df["pred"] == df["submission_pred"]
metrics["generated_accuracy"] = float(df.query("pred=='generated'")["correct"].mean())
metrics["real_accuracy"] = float(df.query("pred=='real'")["correct"].mean())
metrics["balanced_accuracy"] = (metrics["generated_accuracy"] + metrics["real_accuracy"]) / 2
## Other
if "score" in df.columns:
metrics["auc"] = compute_auc(df=df.copy())
metrics["roc"] = compute_roc_curve(df=df.copy())
metrics["fail_rate"] = float(df["score"].isna().mean())
if use_all:
## Split by sources
df["score_name"] = df["pred"] + "_" + df[score_name]
scores_by_source = df.copy().groupby(["score_name"])["correct"].mean()
metrics.update(scores_by_source.to_dict())
## Compute conditional AUC
source_pred = df[[score_name, "pred"]].drop_duplicates().values
all_reals = df["pred"] == "real"
all_generated = df["pred"] == "generated"
for s, pred in source_pred:
source_mask = df[score_name] == s
if pred == "generated":
mask = all_reals | source_mask
elif pred == "real":
mask = all_generated | source_mask
else:
raise ValueError(f"{pred} not allowed")
metrics[f"{pred}_conditional_auc_{s}"] = compute_auc(df.loc[mask])
else:
df["score_name"] = df["pred"] + "_" + df[score_name]
scores_by_ = df.copy().groupby(["score_name"])["correct"].mean()
metrics.update(scores_by_.to_dict())
for s in df[score_name].unique():
mask = df[score_name] == s
metrics[f"conditional_auc_{s}"] = compute_auc(df.loc[mask])
return metrics
def _metric(
solution_df: pd.DataFrame, submission_df: pd.DataFrame, score_name: str = "score", use_all: bool = True
) -> Dict[Any, Any]:
"""
Calculates prediction accuracy against the ground truth.
Args:
solution_df (pd.DataFrame): Ground truth data.
submission_df (pd.DataFrame): Predicted data.
Returns:
dict: Accuracy scores, structure depends on `mode` and `full`.
"""
## Allocate space
evaluation = defaultdict(dict)
solution_df, submission_df = solution_df.copy(), submission_df.copy()
## Ensure alignment of keys and group relevant columns
solution_df["submission_pred"] = solution_df.join(submission_df, lsuffix="_solution", rsuffix="_submission")[
"pred_submission"
].values
if "score" in submission_df.columns:
solution_df["score"] = solution_df.join(submission_df, lsuffix="_solution", rsuffix="_submission")[
"score"
].values
## Save data split
evaluation["public_score"]["proportion"] = len(solution_df.query(f"split=='public'").copy()) / len(solution_df)
evaluation["private_score"]["proportion"] = 1.0
evaluation["private_only_score"]["proportion"] = len(solution_df.query(f"split=='private'").copy()) / len(solution_df)
## Public, private, and private_only split
public_df = solution_df.query("split=='public'").copy()
private_df = solution_df.copy()
private_only_df = solution_df.query("split=='private'").copy()
## Loop
for split, dataframe in zip(["public", "private", "private_only"], [public_df, private_df, private_only_df]):
metrics = compute_metrics(
df=dataframe.copy(), score_name=score_name if split == "public" else f"{score_name}_og", use_all=use_all
)
evaluation[f"{split}_score"] = metrics
return evaluation
def compute(params):
solution_file = hf_hub_download(
repo_id=params.competition_id,
filename="solution.csv",
token=params.token,
repo_type="dataset",
)
solution_df = pd.read_csv(solution_file).set_index(params.submission_id_col)
submission_filename = f"submissions/{params.team_id}-{params.submission_id}.csv"
submission_file = hf_hub_download(
repo_id=params.competition_id,
filename=submission_filename,
token=params.token,
repo_type="dataset",
)
submission_df = pd.read_csv(submission_file).set_index(params.submission_id_col)
return _metric(solution_df, submission_df)
|