File size: 22,912 Bytes
56b1556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fba09af
56b1556
 
 
 
 
 
 
9b9ead9
56b1556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04d80e
5938bb1
 
 
 
e04d80e
56b1556
 
5938bb1
 
 
 
 
 
 
 
880c8df
e04d80e
 
 
 
 
 
5938bb1
 
880c8df
8362467
1b887f5
56b1556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fba09af
f4b0324
 
e04d80e
f4b0324
 
 
f646948
f4b0324
 
 
fba09af
f4b0324
 
e04d80e
 
f4b0324
e04d80e
 
f4b0324
 
 
f646948
 
 
 
 
fba09af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f646948
 
e04d80e
f4b0324
e04d80e
 
 
f4b0324
fba09af
f646948
 
fba09af
 
 
 
 
 
 
f646948
f4b0324
9b9ead9
 
 
 
 
 
 
 
 
 
 
56b1556
 
 
e04d80e
 
 
 
 
f548cd1
f4b0324
f646948
 
 
 
56b1556
 
 
 
 
 
 
 
 
 
 
 
 
e04d80e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fba09af
e04d80e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5938bb1
e04d80e
 
 
 
 
 
 
 
 
 
fba09af
 
 
 
 
e04d80e
 
 
 
 
 
 
 
 
 
 
 
 
 
fba09af
 
 
 
 
 
e04d80e
 
 
 
fba09af
 
e04d80e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11f025b
 
 
 
e04d80e
11f025b
 
e04d80e
11f025b
e04d80e
11f025b
e04d80e
 
11f025b
 
e04d80e
11f025b
 
 
e04d80e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11f025b
 
e04d80e
 
 
 
 
 
 
11f025b
e04d80e
 
 
 
 
 
 
 
 
 
fba09af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04d80e
 
 
fba09af
 
 
e04d80e
 
 
 
 
 
56b1556
e04d80e
 
 
 
 
56b1556
fba09af
 
 
 
 
 
9b9ead9
 
fba09af
e04d80e
 
 
56b1556
805e16c
5938bb1
805e16c
e04d80e
 
 
 
 
1b887f5
56b1556
 
27015a1
 
 
 
1b887f5
27015a1
 
 
 
 
 
880c8df
56b1556
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
import json
from datetime import datetime
from pathlib import Path
from huggingface_hub import snapshot_download
import tqdm.auto as tqdm
from typing import Any, Dict, List, Tuple
from collections import defaultdict
from metric import _metric
import os
import pandas as pd

os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "20"
COMP_CACHE = os.environ.get("COMP_CACHE", "./competition_cache")


def download_competition_data(competition_names: List[str]) -> None:
    """Download copies to local environment"""
    for repo_id in tqdm.tqdm(competition_names):
        snapshot_download(
            repo_id=repo_id,
            local_dir=os.path.join(COMP_CACHE, repo_id),
            repo_type="dataset",
            token=os.environ.get("HF_TOKEN"),
            ignore_patterns="submission_logs/*",
        )


STATUS_MAP = {0: "PENDING", 1: "QUEUED", 2: "PROCESSING", 3: "SUCCESS", 4: "FAILED"}

## Make a directory to store computed results
os.makedirs(Path("competition_cache") / "cached_results", exist_ok=True)
os.makedirs(Path("competition_cache") / "cached_results" / "by_team", exist_ok=True)


def load_teams(competition_space_path: Path) -> pd.DataFrame:
    team_file_name = "teams.json"
    return pd.read_json(Path(competition_space_path) / team_file_name).T


def json_to_dataframe(data, extra_column_name=None, extra_column_value=None):
    flat_data = []
    for entry in data:
        original_flat_entry = {**entry}
        flat_entry = {k: v for k, v in original_flat_entry.items() if not "score" in k}
        times = {
            k.replace("score", "time"): v.get("total_time", -1) for k, v in original_flat_entry.items() if "score" in k
        }
        flat_entry.update(times)
        if extra_column_name:
            flat_entry[extra_column_name] = extra_column_value
        flat_data.append(flat_entry)
    df = pd.DataFrame(flat_data)
    return df


def load_submission_map(competition_space_path: Path) -> Tuple[Dict[str, str], pd.DataFrame]:
    submission_info_dir = "submission_info"
    submission_info_files = list((Path(competition_space_path) / submission_info_dir).glob("*.json"))

    # Loop and collect submission IDs by team
    team_submissions: Dict[str, str] = {}
    submission_summaries: List[pd.DataFrame] = []
    for file in submission_info_files:
        with open(file, "r") as fn:
            json_data = json.load(fn)
        submission_summaries.append(
            json_to_dataframe(
                data=json_data["submissions"], extra_column_name="team_id", extra_column_value=json_data["id"]
            )
        )
        submission_list = pd.read_json(file).submissions.values.tolist()
        for submission in submission_list:
            team_submissions[submission["submission_id"]] = submission["submitted_by"]
    submission_summary = pd.concat(submission_summaries, axis=0)
    submission_summary["status_reason"] = submission_summary["status"].apply(lambda x: STATUS_MAP[x])
    return team_submissions, submission_summary


def get_member_to_team_map(teams: pd.DataFrame, team_submissions: Dict[str, str]) -> Dict[str, str]:
    member_map: Dict[str, str] = {}
    for member_id in team_submissions.values():
        member_map[member_id] = teams[teams.members.apply(lambda x: member_id in x)].id.values[0]
    return member_map


def load_submissions(competition_space_path: Path) -> Dict[str, Dict[str, pd.DataFrame]]:
    submission_dir = "submissions"
    submissions: Dict[str, Dict[str, pd.DataFrame]] = defaultdict(dict)
    for file in list((Path(competition_space_path) / submission_dir).glob("*.csv")):
        file_name = str(file).split("/")[-1].split(".")[0]
        team_id = "-".join(file_name.split("/")[-1].split("-")[:5])
        sub_id = "-".join(file_name.split("/")[-1].split("-")[5:])
        submissions[team_id][sub_id] = pd.read_csv(file).set_index("id")
    return submissions


def compute_metric_per_team(
    solution_df: pd.DataFrame,
    team_submissions: Dict[str, pd.DataFrame],
    submission_summaries: pd.DataFrame,
    score_split: str = "source",
) -> Dict[str, Any]:
    results: Dict[str, Any] = {}
    for submission_id, submission in team_submissions.items():
        selected = (
            submission_summaries.query(f'submission_id=="{submission_id}"')
            .filter(["selected"])
            .reset_index(drop=True)
            .to_dict(orient="index")
            .get(0, {"selected": "False"})
            .get("selected", "False")
        )
        try:
            results[submission_id] = _metric(
                solution_df=solution_df,
                submission_df=submission,
                score_name=score_split,
                use_all=True if score_split == "source" else False,
            )
            for key in (current_results := results[submission_id]):
                current_results[key]["selected"] = selected
        except Exception as e:
            # raise e
            print("SKIPPING: ", submission_id, e)
    return results


def prep_public(public_results: Dict[str, Any]) -> Dict[str, Any]:
    new: Dict[str, Any] = {}
    for key, value in public_results.items():
        if key in ["proportion", "roc", "original_source"]:
            continue
        new[key] = value
    return new


def prep_private(private_results: Dict[str, Any]) -> Dict[str, Any]:
    new: Dict[str, Any] = {}
    for key, value in private_results.items():
        if key in ["proportion", "roc", "anon_source"]:
            continue
        new[key] = value
    return new


def extract_roc(results: Dict[str, Any]) -> Dict[str, Any]:
    new: Dict[str, Any] = {}
    for key, value in results.items():
        if key in ["roc"]:
            for sub_key, sub_value in value.items():
                new[sub_key] = sub_value
            continue
        if key in ["auc"]:
            new[key] = value
    return new


def add_custom_submission(path_to_cache, path_to_subfile, threshold=0):
    import pandas as pd
    import json

    data = pd.read_csv(path_to_subfile)
    data["id"] = data["ID"]
    data["score"] = data["Score"]
    data["pred"] = data["score"].apply(lambda a: "generated" if a >= threshold else "real")

    team_id = "insiders-id-1-2-3"
    team_name = "insiders"
    submission_id = f"sub{threshold}".replace(".", "")

    ## update teams
    teams = json.load(open(path_to_cache + "/teams.json"))
    teams[team_id] = {"id": team_id, "name": team_name, "members": ["na"], "leader": "na"}

    with open(path_to_cache + "/teams.json", "w") as f:
        json.dump(teams, f, indent=4)

    ## create submission

    submission_info_file = path_to_cache + f"/submission_info/{team_id}.json"

    if os.path.exists(submission_info_file):
        temp = json.load(open(submission_info_file))
    else:
        temp = {"id": team_id, "submissions": []}

    temp["submissions"].append(
        {
            "datetime": "2025-09-22 14:42:14",
            "submission_id": submission_id,
            "submission_comment": "",
            "submission_repo": "",
            "space_id": "",
            "submitted_by": "na",
            "status": 3,
            "selected": True,
            "public_score": {},
            "private_score": {},
        }
    )

    with open(submission_info_file, "w") as f:
        json.dump(temp, f)

    data.loc[:, ["id", "pred", "score"]].to_csv(
        path_to_cache + f"/submissions/{team_id}-{submission_id}.csv", index=False
    )


def create_custom_subs():
    import numpy as np

    for threshold in np.linspace(-6, 0, 10):
        add_custom_submission(
            path_to_cache="competition_cache/safe-challenge/video-challenge-task-1-config",
            path_to_subfile="competition_cache/custom/Scores-DSRI-brian.txt",
            threshold=threshold,
        )


def save_by_team(df: pd.DataFrame, save_path_base: str) -> None:
    df = df.copy()
    for team in df["team"].unique():
        os.makedirs(f"competition_cache/cached_results/by_team/{team}", exist_ok=True)
        df_ = df[df["team"] == team].copy()
        df_.to_csv(
            f"competition_cache/cached_results/by_team/{team}/{save_path_base}",
            index=False,
        )


if __name__ == "__main__":

    ## Download data
    spaces: List[str] = [
        "safe-challenge/video-challenge-pilot-config",
        "safe-challenge/video-challenge-task-1-config",
        "safe-challenge/video-challenge-task-2-config",
    ]
    download_competition_data(competition_names=spaces)

    if os.environ.get("MAKE_CUSTOM"):
        print("adding custom subs")
        create_custom_subs()

    ## Loop
    for space in spaces:
        local_dir = Path("competition_cache") / space

        ## Load relevant data
        teams = load_teams(competition_space_path=local_dir)
        team_submissions, submission_summaries = load_submission_map(competition_space_path=local_dir)
        member_map = get_member_to_team_map(teams=teams, team_submissions=team_submissions)
        submissions = load_submissions(competition_space_path=local_dir)

        ## Load solutions
        solutions_df = pd.read_csv(local_dir / "solution.csv").set_index("id")

        ## Map if applicable
        try:
            with open(local_dir / "map.json", "r") as fn:
                space_map = json.load(fn)
            for df_col, df_map in space_map.items():
                solutions_df[df_col] = solutions_df[df_col].map(df_map)
        except Exception as e:
            print("NO MAP FOUND.")
            pass

        ## Update categories
        prep_categories = False
        try:
            categories = {}
            for category in solutions_df["category"].unique():
                if category.replace("real_", "").replace("generated_", "") not in categories:
                    categories[category.replace("real_", "").replace("generated_", "")] = f"c_{len(categories):02d}"
            solutions_df.loc[solutions_df["category"] == "real_camera", "category"] = "camera"
            solutions_df.loc[solutions_df["category"] == "generated_camera", "category"] = "camera"
            solutions_df["category_og"] = solutions_df["category"].copy()
            solutions_df["category"] = solutions_df["category_og"].map(categories)
            prep_categories = True
        except Exception as e:
            print(f"CATEGORIES NOT UPDATED.")
            pass
        solutions_df.to_csv(local_dir / "solution-processed.csv", index=False)

        ## Loop over sources and categories
        if prep_categories:
            scores = ["source", "category"]
        else:
            scores = ["source"]
        for score_name in scores:
            ## Loop and save by team
            public, private, private_only, rocs = [], [], [], []
            # for team_id, submission_set in submissions.items():
            for team_id, submission_set_ids in submission_summaries.query("status_reason=='SUCCESS'").groupby(
                "team_id"
            )["submission_id"]:
                ### lets check if we have the solution csvs
                submission_set = submissions[team_id]
                submission_set_ids_from_csvs = set(submission_set.keys())
                submission_set_ids = set(submission_set_ids)
                union = submission_set_ids | submission_set_ids_from_csvs

                if not (submission_set_ids.issubset(submission_set_ids_from_csvs)):
                    missing = union - submission_set_ids_from_csvs
                    print(f"not all submission csv files found for {team_id}, missing {len(missing)}")

                if submission_set_ids != submission_set_ids_from_csvs:
                    extra = union - submission_set_ids
                    print(f"extra {len(extra)} submissions in csvs than in summary file for team {team_id}")
                    print(f"dropping {extra}")
                    for submission_id in extra:
                        submission_set.pop(submission_id)

                results = compute_metric_per_team(
                    solution_df=solutions_df,
                    team_submissions=submission_set,
                    submission_summaries=submission_summaries.query(f'team_id=="{team_id}"'),
                    score_split=score_name,
                )
                public_results = {
                    key: prep_public(value["public_score"]) for key, value in results.items() if key in team_submissions
                }
                private_results = {
                    key: prep_private(value["private_score"])
                    for key, value in results.items()
                    if key in team_submissions
                }
                private_only_results = {
                    key: prep_private(value["private_only_score"])
                    for key, value in results.items()
                    if key in team_submissions
                }

                ## Add timing
                public_times = {
                    x["submission_id"]: x["public_time"]
                    for x in submission_summaries[submission_summaries["submission_id"].isin(results.keys())][
                        ["submission_id", "public_time"]
                    ].to_dict(orient="records")
                }
                private_times = {
                    x["submission_id"]: x["private_time"]
                    for x in submission_summaries[submission_summaries["submission_id"].isin(results.keys())][
                        ["submission_id", "private_time"]
                    ].to_dict(orient="records")
                }
                private_only_times = {
                    x["submission_id"]: x["private_time"] - x["public_time"]
                    for x in submission_summaries[submission_summaries["submission_id"].isin(results.keys())][
                        ["submission_id", "private_time", "public_time"]
                    ].to_dict(orient="records")
                }
                for key in public_results.keys():
                    public_results[key]["total_time"] = public_times[key]
                for key in private_results.keys():
                    private_results[key]["total_time"] = private_times[key]
                for key in private_only_results.keys():
                    private_only_results[key]["total_time"] = private_only_times[key]

                ## Roc computations
                roc_results = {
                    key: extract_roc(value["private_score"])
                    for key, value in results.items()
                    if key in team_submissions
                }
                roc_df = pd.json_normalize(roc_results.values())
                if len(roc_df) != 0:
                    roc_df.insert(loc=0, column="submission_id", value=roc_results.keys())
                    roc_df.insert(
                        loc=0,
                        column="team",
                        value=[
                            teams[teams.id == member_map[team_submissions[submission_id]]].name.values[0]
                            for submission_id in roc_results.keys()
                        ],
                    )
                    roc_df.insert(
                        loc=0,
                        column="submission_repo",
                        value=[
                            submission_summaries[
                                submission_summaries.team_id == member_map[team_submissions[submission_id]]
                            ].submission_repo.values[0]
                            for submission_id in roc_results.keys()
                        ],
                    )
                    roc_df.insert(
                        loc=0,
                        column="datetime",
                        value=[
                            submission_summaries[
                                submission_summaries.team_id == member_map[team_submissions[submission_id]]
                            ].datetime.values[0]
                            for submission_id in roc_results.keys()
                        ],
                    )
                    roc_df["label"] = roc_df.apply(
                        lambda x: f"AUC: {round(x['auc'], 2)} - {x['team']} - {x['submission_repo']}", axis=1
                    )
                    rocs.append(roc_df)

                ## Append results to save in cache
                public_df = pd.json_normalize(public_results.values())
                public_df.insert(
                    loc=0,
                    column="submission_id",
                    value=list(public_results.keys()),
                )
                public_df.insert(
                    loc=0,
                    column="team",
                    value=[
                        teams[teams.id == member_map[team_submissions[submission_id]]].name.values[0]
                        for submission_id in public_results.keys()
                    ],
                )
                public_df.insert(
                    loc=0,
                    column="team_id",
                    value=[
                        teams[teams.id == member_map[team_submissions[submission_id]]].id.values[0]
                        for submission_id in public_results.keys()
                    ],
                )
                public_df.insert(
                    loc=0,
                    column="datetime",
                    value=[
                        submission_summaries[submission_summaries.submission_id == submission_id].datetime.values[0]
                        for submission_id in public_results.keys()
                    ],
                )
                public.append(public_df)

                ## Private results
                private_df = pd.json_normalize(private_results.values())
                private_df.insert(
                    loc=0,
                    column="submission_id",
                    value=list(private_results.keys()),
                )
                private_df.insert(
                    loc=0,
                    column="team",
                    value=[
                        teams[teams.id == member_map[team_submissions[submission_id]]].name.values[0]
                        for submission_id in private_results.keys()
                    ],
                )
                private_df.insert(
                    loc=0,
                    column="team_id",
                    value=[
                        teams[teams.id == member_map[team_submissions[submission_id]]].id.values[0]
                        for submission_id in private_results.keys()
                    ],
                )
                private_df.insert(
                    loc=0,
                    column="datetime",
                    value=[
                        submission_summaries[submission_summaries.submission_id == submission_id].datetime.values[0]
                        for submission_id in private_results.keys()
                    ],
                )
                private.append(private_df)

                ## Private ONLY results
                private_only_df = pd.json_normalize(private_only_results.values())
                private_only_df.insert(
                    loc=0,
                    column="submission_id",
                    value=list(private_only_results.keys()),
                )
                private_only_df.insert(
                    loc=0,
                    column="team",
                    value=[
                        teams[teams.id == member_map[team_submissions[submission_id]]].name.values[0]
                        for submission_id in private_only_results.keys()
                    ],
                )
                private_only_df.insert(
                    loc=0,
                    column="team_id",
                    value=[
                        teams[teams.id == member_map[team_submissions[submission_id]]].id.values[0]
                        for submission_id in private_only_results.keys()
                    ],
                )
                private_only_df.insert(
                    loc=0,
                    column="datetime",
                    value=[
                        submission_summaries[submission_summaries.submission_id == submission_id].datetime.values[0]
                        for submission_id in private_only_results.keys()
                    ],
                )
                private_only.append(private_only_df)

            ## Save as csvs
            public = pd.concat(public, axis=0, ignore_index=True).sort_values(by="balanced_accuracy", ascending=False)
            private = pd.concat(private, axis=0, ignore_index=True).sort_values(by="balanced_accuracy", ascending=False)
            private_only = pd.concat(private_only, axis=0, ignore_index=True).sort_values(
                by="balanced_accuracy", ascending=False
            )
            rocs = pd.concat(rocs, axis=0, ignore_index=True).explode(["tpr", "fpr", "threshold"], ignore_index=True)
            public.to_csv(
                Path("competition_cache")
                / "cached_results"
                / f"{str(local_dir).split('/')[-1]}_{score_name}_public_score.csv",
                index=False,
            )
            private.to_csv(
                Path("competition_cache")
                / "cached_results"
                / f"{str(local_dir).split('/')[-1]}_{score_name}_private_score.csv",
                index=False,
            )
            private_only.to_csv(
                Path("competition_cache")
                / "cached_results"
                / f"{str(local_dir).split('/')[-1]}_{score_name}_private_only_score.csv",
                index=False,
            )
            save_by_team(df=public, save_path_base=f"{str(local_dir).split('/')[-1]}_{score_name}_public.csv")
            save_by_team(df=private, save_path_base=f"{str(local_dir).split('/')[-1]}_{score_name}_private.csv")

            rocs.to_csv(
                Path("competition_cache") / "cached_results" / f"{str(local_dir).split('/')[-1]}_{score_name}_rocs.csv",
                index=False,
            )

            submission_summaries["team"] = submission_summaries["team_id"].apply(lambda a: teams.loc[a, "name"])

            submission_summaries.to_csv(
                Path("competition_cache")
                / "cached_results"
                / f"{str(local_dir).split('/')[-1]}_{score_name}_submissions.csv",
                index=False,
            )

    ## Update time
    import datetime
    import pytz

    # Get the current time in EST
    est_timezone = pytz.timezone("US/Eastern")
    current_time_est = datetime.datetime.now(est_timezone)

    # Format the time as desired
    formatted_time = current_time_est.strftime("%Y-%m-%d %H:%M:%S %Z")

    formatted = f"Updated on {formatted_time}"
    with open("competition_cache/updated.txt", "w") as file:
        file.write(formatted)