File size: 7,362 Bytes
edf1149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# DEPENDENCIES
from abc import ABC
from enum import Enum
from typing import Any
from typing import Dict
from typing import Tuple
from loguru import logger
from typing import Optional
from abc import abstractmethod
from dataclasses import dataclass


class MetricResult:
    """
    Result from a metric calculation
    """
    def __init__(self, metric_name: str, ai_probability: float, human_probability: float, mixed_probability: float, confidence: float, details: Optional[Dict[str, Any]] = None, error: Optional[str] = None):
        self.metric_name       = metric_name
        self.ai_probability    = max(0.0, min(1.0, ai_probability))
        self.human_probability = max(0.0, min(1.0, human_probability))
        self.mixed_probability = max(0.0, min(1.0, mixed_probability))
        self.confidence        = max(0.0, min(1.0, confidence))
        self.details           = details or {}
        self.error             = error
        
        # Normalize probabilities to sum to 1
        total                  = self.ai_probability + self.human_probability + self.mixed_probability
        
        if (total > 0):
            self.ai_probability    /= total
            self.human_probability /= total
            self.mixed_probability /= total

    
    def to_dict(self) -> Dict[str, Any]:
        """
        Convert to dictionary
        """
        return {"metric_name"       : self.metric_name,
                "ai_probability"    : round(self.ai_probability, 4),
                "human_probability" : round(self.human_probability, 4),
                "mixed_probability" : round(self.mixed_probability, 4),
                "confidence"        : round(self.confidence, 4),
                "details"           : self.details,
                "error"             : self.error,
                "success"           : self.error is None,
               }
    

    @property
    def is_ai(self) -> bool:
        """
        Check if classified as AI
        """
        return self.ai_probability > max(self.human_probability, self.mixed_probability)
    
    
    @property
    def is_human(self) -> bool:
        """
        Check if classified as human
        """
        return self.human_probability > max(self.ai_probability, self.mixed_probability)
    

    @property
    def is_mixed(self) -> bool:
        """
        Check if classified as mixed
        """
        return self.mixed_probability > max(self.ai_probability, self.human_probability)
    

    @property
    def predicted_class(self) -> str:
        """
        Get predicted class
        """
        if self.is_ai:
            return "AI"
        
        elif self.is_human:
            return "Human"
        
        else:
            return "Mixed"


class BaseMetric(ABC):
    """
    Abstract base class for all detection metrics
    """
    def __init__(self, name: str, description: str):
        self.name           = name
        self.description    = description
        self.is_initialized = False
        self._model         = None
        self._tokenizer     = None
    

    @abstractmethod
    def initialize(self) -> bool:
        """
        Initialize the metric (load models, etc.)
        
        Returns:
        --------
            True if successful, False otherwise
        """
        pass
    

    @abstractmethod
    def compute(self, text: str, **kwargs) -> MetricResult:
        """
        Compute the metric for given text
        
        Arguments:
        ----------
            text     { str } : Input text to analyze

            **kwargs         : Additional parameters
            
        Returns:
        --------
            MetricResult object
        """
        pass
    

    def cleanup(self):
        """
        Clean up resources
        """
        if self._model is not None:
            del self._model
            self._model = None

        if self._tokenizer is not None:
            del self._tokenizer
            self._tokenizer = None

        self.is_initialized = False
    

    def __enter__(self):
        """
        Context manager entry
        """
        if not self.is_initialized:
            self.initialize()
        
        return self
    

    def __exit__(self, exc_type, exc_val, exc_tb):
        """
        Context manager exit
        """
        self.cleanup()

    
    def _safe_compute(self, text: str, **kwargs) -> MetricResult:
        """
        Safe wrapper for compute with error handling
        
        Arguments:
        ----------
            text     { str } : Input text

            **kwargs         : Additional parameters
            
        Returns:
        --------
            { MetricResult } : MetricResult (with error if computation failed)
        """
        try:
            if not self.is_initialized:
                logger.warning(f"{self.name}: Not initialized, initializing now...")
                if not self.initialize():
                    return MetricResult(metric_name       = self.name,
                                        ai_probability    = 0.5,
                                        human_probability = 0.5,
                                        mixed_probability = 0.0,
                                        confidence        = 0.0,
                                        error             = "Failed to initialize metric",
                                       )
            
            result = self.compute(text, **kwargs)
            return result
            

        except Exception as e:
            logger.error(f"{self.name}: Error computing metric: {e}")
            return MetricResult(metric_name       = self.name,
                                ai_probability    = 0.5,
                                human_probability = 0.5,
                                mixed_probability = 0.0,
                                confidence        = 0.0,
                                error             = str(e),
                               )

    
    def batch_compute(self, texts: list, **kwargs) -> list:
        """
        Compute metric for multiple texts
        
        Arguments:
        ----------
            texts    { list } : List of input texts

            **kwargs          : Additional parameters
            
        Returns:
        --------
               { list }       : List of MetricResult objects
        """
        results = list()

        for text in texts:
            result = self._safe_compute(text, **kwargs)
            results.append(result)
        
        return results
    

    def get_info(self) -> Dict[str, Any]:
        """
        Get metric information
        """
        return {"name"        : self.name,
                "description" : self.description,
                "initialized" : self.is_initialized,
               }
    

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(name='{self.name}', initialized={self.is_initialized})"



class StatisticalMetric(BaseMetric):
    """
    Base class for statistical metrics that don't require models
    """
    
    def initialize(self) -> bool:
        """
        Statistical metrics don't need initialization
        """
        self.is_initialized = True
        return True



# Export
__all__ = ["BaseMetric",
           "MetricResult",
           "StatisticalMetric",
          ]