Spaces:
Running
Running
Upload 2 files
Browse files- Dockerfile +13 -0
- config.py +266 -0
Dockerfile
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM ghcr.io/sergey21000/chatbot-rag:main-cpu
|
| 2 |
+
|
| 3 |
+
RUN useradd -m -u 1000 user \
|
| 4 |
+
&& chown -R user:user /app
|
| 5 |
+
|
| 6 |
+
USER user
|
| 7 |
+
ENV HOME=/home/user \
|
| 8 |
+
PATH=/home/user/.local/bin:$PATH
|
| 9 |
+
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
COPY --chown=user config.py ./
|
| 12 |
+
|
| 13 |
+
CMD ["python3", "app.py"]
|
config.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Any, ClassVar
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
from llama_cpp import Llama
|
| 9 |
+
from chromadb import EmbeddingFunction
|
| 10 |
+
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class ModelStorage:
|
| 16 |
+
'''Global model storage'''
|
| 17 |
+
LLM_MODEL: ClassVar[dict[str, Llama]] = {}
|
| 18 |
+
EMBED_MODEL: ClassVar[dict[str, EmbeddingFunction]] = {}
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class UiBlocksConfig:
|
| 22 |
+
'''Gradio settings for gr.Blocks()'''
|
| 23 |
+
CSS: str | None = '''
|
| 24 |
+
.gradio-container {
|
| 25 |
+
width: 70% !important;
|
| 26 |
+
margin: 0 auto !important;
|
| 27 |
+
}
|
| 28 |
+
'''
|
| 29 |
+
if hasattr(sys, 'getandroidapilevel') or 'ANDROID_ROOT' in os.environ:
|
| 30 |
+
CSS = None
|
| 31 |
+
UI_BLOCKS_KWARGS: dict[str, Any] = dict(
|
| 32 |
+
theme=None,
|
| 33 |
+
css=CSS,
|
| 34 |
+
analytics_enabled=False,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class InferenceConfig:
|
| 39 |
+
'''Model inference settings'''
|
| 40 |
+
def __init__(self):
|
| 41 |
+
self.encode_kwargs: dict[str, Any] = dict(
|
| 42 |
+
batch_size=300,
|
| 43 |
+
normalize_embeddings=None,
|
| 44 |
+
)
|
| 45 |
+
self.sampling_kwargs: dict[str, Any] = dict(
|
| 46 |
+
temperature=0.2,
|
| 47 |
+
top_p=0.95,
|
| 48 |
+
top_k=40,
|
| 49 |
+
repeat_penalty=1.0,
|
| 50 |
+
)
|
| 51 |
+
self.do_sample: bool = False
|
| 52 |
+
self.rag_mode: bool = False
|
| 53 |
+
self.history_len: int = 0
|
| 54 |
+
self.show_thinking: bool = False
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class TextLoadConfig:
|
| 58 |
+
'''Settings for loading texts from documents'''
|
| 59 |
+
def __init__(self):
|
| 60 |
+
self.partition_kwargs: dict[str, str | int | bool | None] = dict(
|
| 61 |
+
chunking_strategy='basic',
|
| 62 |
+
max_characters=800,
|
| 63 |
+
new_after_n_chars=500,
|
| 64 |
+
overlap=0,
|
| 65 |
+
clean=True,
|
| 66 |
+
bullets=True,
|
| 67 |
+
extra_whitespace=True,
|
| 68 |
+
dashes=False,
|
| 69 |
+
trailing_punctuation=True,
|
| 70 |
+
lowercase=False,
|
| 71 |
+
)
|
| 72 |
+
self.SUPPORTED_FILE_EXTS: str = '.csv .tsv .docx .md .org .pdf .pptx .xlsx'
|
| 73 |
+
self.subtitle_lang: str = 'ru'
|
| 74 |
+
self.SUBTITLE_LANGS: list[str] = ['ru', 'en']
|
| 75 |
+
self.max_lines_text_view: int = 200
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class DbConfig:
|
| 79 |
+
'''Vector database parameters (Chroma)'''
|
| 80 |
+
def __init__(self):
|
| 81 |
+
self.create_collection_kwargs: dict[str, Any] = dict(
|
| 82 |
+
configuration=dict(
|
| 83 |
+
hnsw=dict(
|
| 84 |
+
space='cosine', # l2, ip, cosine, default l2
|
| 85 |
+
ef_construction=200,
|
| 86 |
+
)
|
| 87 |
+
)
|
| 88 |
+
)
|
| 89 |
+
self.query_kwargs: dict[str, Any] = dict(
|
| 90 |
+
n_results=2,
|
| 91 |
+
max_distance_treshold=0.5,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class PromptConfig:
|
| 96 |
+
'''Prompts'''
|
| 97 |
+
def __init__(self):
|
| 98 |
+
self.system_prompt: str | None = None
|
| 99 |
+
self.user_msg_with_context: str = ''
|
| 100 |
+
self.context_template: str = '''Ответь на вопрос при условии контекста.
|
| 101 |
+
|
| 102 |
+
Контекст:
|
| 103 |
+
{context}
|
| 104 |
+
|
| 105 |
+
Вопрос:
|
| 106 |
+
{user_message}
|
| 107 |
+
|
| 108 |
+
Ответ:'''
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class ModelConfig:
|
| 112 |
+
'''Configuration of paths, models and generation parameters'''
|
| 113 |
+
def __init__(self):
|
| 114 |
+
self.LLM_MODELS_PATH: Path = Path('models')
|
| 115 |
+
self.EMBED_MODELS_PATH: Path = Path('embed_models')
|
| 116 |
+
self.LLM_MODELS_PATH.mkdir(exist_ok=True)
|
| 117 |
+
self.EMBED_MODELS_PATH.mkdir(exist_ok=True)
|
| 118 |
+
self.llm_model_repo: str = 'bartowski/google_gemma-3-1b-it-GGUF'
|
| 119 |
+
self.llm_model_file: str = 'google_gemma-3-1b-it-Q8_0.gguf'
|
| 120 |
+
self.embed_model_repo: str = 'Alibaba-NLP/gte-multilingual-base'
|
| 121 |
+
self.embed_model_kwargs: dict[str, Any] = dict(
|
| 122 |
+
device='cuda:0',
|
| 123 |
+
trust_remote_code=True,
|
| 124 |
+
cache_folder=self.EMBED_MODELS_PATH,
|
| 125 |
+
token=os.getenv('HF_TOKEN'),
|
| 126 |
+
model_kwargs=dict(
|
| 127 |
+
torch_dtype='auto',
|
| 128 |
+
)
|
| 129 |
+
)
|
| 130 |
+
self.llm_model_kwargs: dict[str, Any] = dict(
|
| 131 |
+
n_gpu_layers=-1,
|
| 132 |
+
n_ctx=4096,
|
| 133 |
+
verbose=False,
|
| 134 |
+
local_dir=self.LLM_MODELS_PATH,
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class ReposConfig:
|
| 139 |
+
'''Links to repositories with ggu models'''
|
| 140 |
+
def __init__(self):
|
| 141 |
+
self.llm_model_repos: list[str] = [
|
| 142 |
+
'bartowski/google_gemma-3-1b-it-GGUF',
|
| 143 |
+
'bartowski/google_gemma-3-4b-it-GGUF',
|
| 144 |
+
'bartowski/Qwen_Qwen3-1.7B-GGUF',
|
| 145 |
+
'bartowski/Qwen_Qwen3-4B-GGUF',
|
| 146 |
+
]
|
| 147 |
+
self.embed_model_repos: list[str] = [
|
| 148 |
+
'Alibaba-NLP/gte-multilingual-base',
|
| 149 |
+
'sergeyzh/rubert-tiny-turbo',
|
| 150 |
+
'intfloat/multilingual-e5-large',
|
| 151 |
+
'intfloat/multilingual-e5-base',
|
| 152 |
+
'intfloat/multilingual-e5-small',
|
| 153 |
+
'intfloat/multilingual-e5-large-instruct',
|
| 154 |
+
'sentence-transformers/all-mpnet-base-v2',
|
| 155 |
+
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
|
| 156 |
+
'ai-forever/ruElectra-medium',
|
| 157 |
+
'ai-forever/sbert_large_nlu_ru',
|
| 158 |
+
'deepvk/USER2-small',
|
| 159 |
+
'BAAI/bge-m3-retromae',
|
| 160 |
+
]
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
class Config:
|
| 164 |
+
'''General config'''
|
| 165 |
+
def __init__(self):
|
| 166 |
+
self.Inference: InferenceConfig = InferenceConfig()
|
| 167 |
+
self.TextLoad: TextLoadConfig = TextLoadConfig()
|
| 168 |
+
self.Prompt: PromptConfig = PromptConfig()
|
| 169 |
+
self.Db: DbConfig = DbConfig()
|
| 170 |
+
self.Model: ModelConfig = ModelConfig()
|
| 171 |
+
self.Repos: ReposConfig = ReposConfig()
|
| 172 |
+
|
| 173 |
+
self.generation_kwargs: dict[str, Any] = dict(
|
| 174 |
+
do_sample=self.Inference.do_sample,
|
| 175 |
+
temperature=self.Inference.sampling_kwargs['temperature'],
|
| 176 |
+
top_p=self.Inference.sampling_kwargs['top_p'],
|
| 177 |
+
top_k=self.Inference.sampling_kwargs['top_k'],
|
| 178 |
+
repeat_penalty=self.Inference.sampling_kwargs['repeat_penalty'],
|
| 179 |
+
history_len=self.Inference.history_len,
|
| 180 |
+
system_prompt=self.Prompt.system_prompt,
|
| 181 |
+
context_template=self.Prompt.context_template,
|
| 182 |
+
show_thinking=self.Inference.show_thinking,
|
| 183 |
+
n_results=self.Db.query_kwargs['n_results'],
|
| 184 |
+
max_distance_treshold=self.Db.query_kwargs['max_distance_treshold'],
|
| 185 |
+
user_msg_with_context=self.Prompt.user_msg_with_context,
|
| 186 |
+
rag_mode=self.Inference.rag_mode,
|
| 187 |
+
)
|
| 188 |
+
self.load_text_kwargs: dict[str, Any] = dict(
|
| 189 |
+
chunking_strategy=self.TextLoad.partition_kwargs['chunking_strategy'],
|
| 190 |
+
max_characters=self.TextLoad.partition_kwargs['max_characters'],
|
| 191 |
+
new_after_n_chars=self.TextLoad.partition_kwargs['new_after_n_chars'],
|
| 192 |
+
overlap=self.TextLoad.partition_kwargs['overlap'],
|
| 193 |
+
clean=self.TextLoad.partition_kwargs['clean'],
|
| 194 |
+
bullets=self.TextLoad.partition_kwargs['bullets'],
|
| 195 |
+
extra_whitespace=self.TextLoad.partition_kwargs['extra_whitespace'],
|
| 196 |
+
dashes=self.TextLoad.partition_kwargs['dashes'],
|
| 197 |
+
trailing_punctuation=self.TextLoad.partition_kwargs['trailing_punctuation'],
|
| 198 |
+
lowercase=self.TextLoad.partition_kwargs['lowercase'],
|
| 199 |
+
subtitle_lang=self.TextLoad.subtitle_lang,
|
| 200 |
+
)
|
| 201 |
+
self.load_model_kwargs: dict[str, Any] = dict(
|
| 202 |
+
llm_model_repo=self.Model.llm_model_repo,
|
| 203 |
+
llm_model_file=self.Model.llm_model_file,
|
| 204 |
+
embed_model_repo=self.Model.embed_model_repo,
|
| 205 |
+
n_gpu_layers=self.Model.llm_model_kwargs['n_gpu_layers'],
|
| 206 |
+
n_ctx=self.Model.llm_model_kwargs['n_ctx'],
|
| 207 |
+
)
|
| 208 |
+
self.view_text_kwargs: dict[str, Any] = dict(
|
| 209 |
+
max_lines_text_view=self.TextLoad.max_lines_text_view,
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
def get_sampling_kwargs(self) -> dict[str, Any]:
|
| 213 |
+
return dict(
|
| 214 |
+
temperature=self.generation_kwargs['temperature'],
|
| 215 |
+
top_p=self.generation_kwargs['top_p'],
|
| 216 |
+
top_k=self.generation_kwargs['top_k'],
|
| 217 |
+
repeat_penalty=self.generation_kwargs['repeat_penalty'],
|
| 218 |
+
)
|
| 219 |
+
def get_rag_kwargs(self) -> dict[str, Any]:
|
| 220 |
+
return dict(
|
| 221 |
+
n_results=self.generation_kwargs['n_results'],
|
| 222 |
+
max_distance_treshold=self.generation_kwargs['max_distance_treshold'],
|
| 223 |
+
user_msg_with_context=self.generation_kwargs['user_msg_with_context'],
|
| 224 |
+
context_template=self.generation_kwargs['context_template'],
|
| 225 |
+
)
|
| 226 |
+
def get_partition_kwargs(self) -> dict[str, Any]:
|
| 227 |
+
return dict(
|
| 228 |
+
chunking_strategy=self.load_text_kwargs['chunking_strategy'],
|
| 229 |
+
max_characters=self.load_text_kwargs['max_characters'],
|
| 230 |
+
new_after_n_chars=self.load_text_kwargs['new_after_n_chars'],
|
| 231 |
+
overlap=self.load_text_kwargs['overlap'],
|
| 232 |
+
clean=self.load_text_kwargs['clean'],
|
| 233 |
+
bullets=self.load_text_kwargs['bullets'],
|
| 234 |
+
extra_whitespace=self.load_text_kwargs['extra_whitespace'],
|
| 235 |
+
dashes=self.load_text_kwargs['dashes'],
|
| 236 |
+
trailing_punctuation=self.load_text_kwargs['trailing_punctuation'],
|
| 237 |
+
lowercase=self.load_text_kwargs['lowercase'],
|
| 238 |
+
)
|
| 239 |
+
def get_clean_kwargs(self) -> dict[str, Any]:
|
| 240 |
+
return dict(
|
| 241 |
+
bullets=self.load_text_kwargs['bullets'],
|
| 242 |
+
extra_whitespace=self.load_text_kwargs['extra_whitespace'],
|
| 243 |
+
dashes=self.load_text_kwargs['dashes'],
|
| 244 |
+
trailing_punctuation=self.load_text_kwargs['trailing_punctuation'],
|
| 245 |
+
lowercase=self.load_text_kwargs['lowercase'],
|
| 246 |
+
)
|
| 247 |
+
def get_chunking_kwargs(self):
|
| 248 |
+
return dict(
|
| 249 |
+
max_characters=self.load_text_kwargs['max_characters'],
|
| 250 |
+
new_after_n_chars=self.load_text_kwargs['new_after_n_chars'],
|
| 251 |
+
overlap=self.load_text_kwargs['overlap'],
|
| 252 |
+
)
|
| 253 |
+
def get_embed_model_kwargs(self) -> dict[str, Any]:
|
| 254 |
+
return self.Model.embed_model_kwargs
|
| 255 |
+
|
| 256 |
+
def get_encode_kwargs(self) -> dict[str, Any]:
|
| 257 |
+
return self.Inference.encode_kwargs
|
| 258 |
+
|
| 259 |
+
def get_llm_model_kwargs(self) -> dict[str, Any]:
|
| 260 |
+
return self.Model.llm_model_kwargs
|
| 261 |
+
|
| 262 |
+
def get_query_kwargs(self) -> dict[str, Any]:
|
| 263 |
+
return dict(
|
| 264 |
+
n_results=self.generation_kwargs['n_results'],
|
| 265 |
+
max_distance_treshold=self.generation_kwargs['max_distance_treshold'],
|
| 266 |
+
)
|