Spaces:
Paused
Paused
File size: 25,744 Bytes
08b23ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import json
import numpy as np
import logging
import glob
import torch
import torch.nn.functional as F
from PIL import Image
from tqdm import tqdm
from renderer import MeshRenderer3D
from model import RiggingModel
from utils.quat_utils import (
compute_rest_local_positions, quat_inverse, quat_log, quat_multiply
)
from utils.loss_utils import (
DepthModule, compute_reprojection_loss, geodesic_loss, root_motion_reg,
calculate_flow_loss, compute_depth_loss_normalized, joint_motion_coherence
)
from utils.data_loader import load_model_from_obj_and_rig, prepare_depth
from utils.save_utils import (
save_args, visualize_joints_on_mesh, save_final_video,
save_and_smooth_results, visualize_points_on_mesh, save_track_points
)
from utils.misc import warmup_then_decay
from third_partys.co_tracker.save_track import save_track
class AnimationOptimizer:
"""Main class for animation optimization with video guidance."""
def __init__(self, args, device = 'cuda:0'):
self.args = args
self.device = device
self.logger = self._setup_logger()
# Training parameters
self.reinit_patience_threshold = 20
self.loss_divergence_factor = 2.0
self.gradient_clip_norm = 1.0
# Loss weights
self.target_ratios = {
'rgb': args.rgb_wt,
'flow': args.flow_wt,
'proj_joint': args.proj_joint_wt,
'proj_vert': args.proj_vert_wt,
'depth': args.depth_wt,
'mask': args.mask_wt
}
self.loss_weights = {
'rgb': 1.0,
'flow': 1.0,
'proj_joint': 1.0,
'proj_vert': 1.0,
'depth': 1.0,
'mask': 1.0
}
def _setup_logger(self):
"""Set up logging configuration."""
logger = logging.getLogger("animation_optimizer")
logger.setLevel(logging.INFO)
if not logger.handlers:
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
return logger
def _add_file_handler(self, log_path):
"""Add file handler to logger."""
file_handler = logging.FileHandler(log_path)
formatter = logging.Formatter("%(asctime)s %(message)s")
file_handler.setFormatter(formatter)
self.logger.addHandler(file_handler)
def _initialize_parameters(self, batch_size, num_joints):
"""Initialize optimization parameters."""
# Fixed first frame quaternions (identity)
fixed_quat_0 = torch.zeros((1, num_joints, 4), device=self.device)
fixed_quat_0[..., 0] = 1.0
# Initialize learnable quaternions for frames 1 to B-1
learn_quats_init = torch.zeros((batch_size - 1, num_joints, 4), device=self.device)
learn_quats_init[..., 0] = 1.0
quats_to_optimize = learn_quats_init.clone().detach().requires_grad_(True)
# Initialize global transformations
fixed_global_quat_0 = torch.zeros((1, 4), device=self.device)
fixed_global_quat_0[:, 0] = 1.0
fixed_global_trans_0 = torch.zeros((1, 3), device=self.device)
# Initialize learnable global transformations
global_quats_init = torch.zeros((batch_size - 1, 4), device=self.device)
global_quats_init[:, 0] = 1.0
global_trans_init = torch.zeros((batch_size - 1, 3), device=self.device)
global_quats = global_quats_init.clone().detach().requires_grad_(True)
global_trans = global_trans_init.clone().detach().requires_grad_(True)
return quats_to_optimize, global_quats, global_trans, fixed_quat_0, fixed_global_quat_0, fixed_global_trans_0
def _setup_optimizer_and_scheduler(self, quats_to_optimize, global_quats, global_trans, n_iters):
"""Set up optimizer and learning rate scheduler."""
base_lr = self.args.warm_lr
max_lr = self.args.lr
warmup_steps = 20
min_lr = self.args.min_lr
quat_lr = base_lr # *2
optimizer = torch.optim.AdamW([
{'params': quats_to_optimize, 'lr': quat_lr},
{'params': global_quats, 'lr': quat_lr},
{'params': global_trans, 'lr': base_lr}
])
scheduler = warmup_then_decay(
optimizer=optimizer,
total_steps=n_iters,
warmup_steps=warmup_steps,
max_lr=max_lr,
min_lr=min_lr,
base_lr=base_lr
)
return optimizer, scheduler
def _compute_smoothness_losses(self, quats_normed, all_global_quats_normed, all_global_trans, model):
"""Compute various smoothness losses."""
# Rotation smoothness loss using geodesic distance
theta = geodesic_loss(quats_normed[1:], quats_normed[:-1])
rot_smoothness_loss = (theta ** 2).mean()
# Second-order rotation smoothness (acceleration)
omega = quat_log(quat_multiply(quat_inverse(quats_normed[:-1]), quats_normed[1:]))
rot_acc = omega[1:] - omega[:-1]
rot_acc_smoothness_loss = rot_acc.pow(2).mean()
# Joint motion coherence loss (parent-child relative motion smoothness)
joint_coherence_loss = joint_motion_coherence(quats_normed, model.parent_indices)
# Root motion regularization
root_pos_smooth_loss, root_quat_smooth_loss = root_motion_reg(
all_global_quats_normed, all_global_trans
)
return rot_smoothness_loss, rot_acc_smoothness_loss, joint_coherence_loss, root_pos_smooth_loss + root_quat_smooth_loss
def pre_calibrate_loss_weights(self, loss_components, target_ratios=None):
""" calibrate loss weights """
loss_for_ratio = {name: loss.detach().clone() for name, loss in loss_components.items()}
rgb_loss = loss_for_ratio['rgb'].item()
for name, loss_val in loss_for_ratio.items():
if name == 'rgb':
continue
if loss_val > 1e-8:
scale_factor = rgb_loss / loss_val.item()
target_ratio = target_ratios.get(name, 1.0)
new_weight = self.loss_weights.get(name, 1.0) * scale_factor * target_ratio
self.loss_weights[name] = new_weight
def _compute_losses(
self,
model,
renderer,
images_batch,
tracked_joints_2d,
joint_vis_mask,
track_verts_2d,
vert_vis_mask,
sampled_vertex_indices,
track_indices,
flow_dirs,
depth_gt_raw,
mask,
out_dir,
iteration
):
"""Compute all losses for the optimization."""
batch_size = images_batch.shape[0]
meshes = [model.get_mesh(t) for t in range(batch_size)]
pred_images_all = renderer.render_batch(meshes)
# 2D projection losses
pred_joints_3d = model.joint_positions
proj_joint_loss = compute_reprojection_loss(
renderer, joint_vis_mask, pred_joints_3d,
tracked_joints_2d, self.args.img_size
)
pred_points_3d = model.deformed_vertices[0]
proj_vert_loss = compute_reprojection_loss(
renderer, vert_vis_mask,
pred_points_3d[:, sampled_vertex_indices],
track_verts_2d[:, track_indices],
self.args.img_size
)
# RGB loss
pred_rgb = pred_images_all[..., :3]
real_rgb = images_batch[..., :3]
diff_rgb_masked = (pred_rgb - real_rgb) * mask.unsqueeze(-1)
mse_rgb_num = (diff_rgb_masked ** 2).sum()
mse_rgb_den = mask.sum() * 3
rgb_loss = mse_rgb_num / mse_rgb_den.clamp_min(1e-8)
# Mask loss
silhouette_soft = renderer.render_silhouette_batch(meshes).squeeze()
mask_loss = F.binary_cross_entropy(silhouette_soft, mask)
# Depth losses
fragments = renderer.get_rasterization_fragments(meshes)
zbuf_depths = fragments.zbuf[..., 0]
depth_loss = compute_depth_loss_normalized(depth_gt_raw, zbuf_depths, mask)
# Flow losses
flow_loss = calculate_flow_loss(flow_dirs, self.device, mask, renderer, model)
loss_components = {
'rgb': rgb_loss,
'proj_joint': proj_joint_loss,
'proj_vert': proj_vert_loss,
'depth': depth_loss,
'flow': flow_loss,
'mask': mask_loss
}
return loss_components
def optimization(
self,
images_batch,
model,
renderer,
tracked_joints_2d,
joint_vis_mask,
track_verts_2d,
vert_vis_mask,
sampled_vertex_indices,
track_indices,
flow_dirs,
n_iters,
out_dir):
"""
Optimize animation parameters with fixed first frame.
"""
torch.autograd.set_detect_anomaly(True)
batch_size, _, _, _ = images_batch.shape
num_joints = model.joints_rest.shape[0]
# Setup output directory and logging
os.makedirs(out_dir, exist_ok=True)
log_path = os.path.join(out_dir, "optimization.log")
self._add_file_handler(log_path)
# Initialize parameters
(quats_to_optimize, global_quats, global_trans,
fixed_quat_0, fixed_global_quat_0, fixed_global_trans_0) = self._initialize_parameters(batch_size, num_joints)
# Setup rest positions and bind matrices
rest_local_pos = compute_rest_local_positions(model.joints_rest, model.parent_indices)
model.initialize_bind_matrices(rest_local_pos)
# Setup optimizer and scheduler
optimizer, scheduler = self._setup_optimizer_and_scheduler(
quats_to_optimize, global_quats, global_trans, n_iters
)
# Initialize depth module and flow weights
depth_module = DepthModule(
encoder='vitl',
device=self.device,
input_size=images_batch.shape[1],
fp32=False
)
# Prepare masks
real_rgb = images_batch[..., :3]
threshold = 0.95
with torch.no_grad():
background_mask = (real_rgb > threshold).all(dim=-1)
mask = (~background_mask).float()
depth_gt_raw = prepare_depth(
flow_dirs.replace('flow', 'depth'), real_rgb, self.device, depth_module
)
# Optimization tracking
best_loss = float('inf')
patience = 0
best_params = None
pbar = tqdm(total=n_iters, desc="Optimizing animation")
for iteration in range(n_iters):
# Combine fixed and learnable parameters
quats_all = torch.cat([fixed_quat_0, quats_to_optimize], dim=0)
# Normalize quaternions
reshaped = quats_all.reshape(-1, 4)
norm = torch.norm(reshaped, dim=1, keepdim=True).clamp_min(1e-8)
quats_normed = (reshaped / norm).reshape(batch_size, num_joints, 4)
# Global transformations
all_global_quats = torch.cat([fixed_global_quat_0, global_quats], dim=0)
all_global_trans = torch.cat([fixed_global_trans_0, global_trans], dim=0)
all_global_quats_normed = all_global_quats / torch.norm(
all_global_quats, dim=-1, keepdim=True
).clamp_min(1e-8)
# Compute smoothness losses
(rot_smoothness_loss, rot_acc_smoothness_loss, joint_coherence_loss,
root_smooth_loss) = self._compute_smoothness_losses(
quats_normed, all_global_quats_normed, all_global_trans, model
)
# animate model
model.animate(quats_normed, all_global_quats_normed, all_global_trans)
# Verify first frame hasn't changed
verts0 = model.vertices[0]
de0 = model.deformed_vertices[0][0]
assert torch.allclose(de0, verts0, atol=1e-2), "First frame vertices have changed!"
# Compute all losses
loss_components = self._compute_losses(
model, renderer, images_batch, tracked_joints_2d, joint_vis_mask,
track_verts_2d, vert_vis_mask, sampled_vertex_indices, track_indices,
flow_dirs, depth_gt_raw, mask, out_dir, iteration
)
total_smoothness_loss = rot_smoothness_loss + rot_acc_smoothness_loss * 10
if iteration == 0:
self.pre_calibrate_loss_weights(loss_components, self.target_ratios)
total_loss = (
loss_components['rgb'] +
self.loss_weights['mask'] * loss_components['mask'] +
self.loss_weights['flow'] * loss_components['flow'] +
self.loss_weights['proj_joint'] * loss_components['proj_joint'] +
self.loss_weights['proj_vert'] * loss_components['proj_vert'] +
self.loss_weights['depth'] * loss_components['depth'] +
self.args.smooth_weight * total_smoothness_loss +
self.args.coherence_weight * joint_coherence_loss +
self.args.root_smooth_weight * root_smooth_loss
)
# Optimization step
optimizer.zero_grad()
total_loss.backward()
torch.nn.utils.clip_grad_norm_(
[quats_to_optimize, global_quats, global_trans],
max_norm=self.gradient_clip_norm
)
optimizer.step()
scheduler.step()
# Update progress bar and logging
loss_desc = (
f"Loss: {total_loss.item():.4f}, "
f"RGB: {loss_components['rgb'].item():.4f}, "
f"Mask: {self.loss_weights['mask'] * loss_components['mask'].item():.4f}, "
f"Flow: {self.loss_weights['flow'] * loss_components['flow'].item():.4f}, "
f"Proj_joint: {self.loss_weights['proj_joint'] * loss_components['proj_joint'].item():.4f}, "
f"Proj_vert: {self.loss_weights['proj_vert'] * loss_components['proj_vert'].item():.4f}, "
f"Depth: {self.loss_weights['depth'] * loss_components['depth'].item():.4f}, "
f"Smooth: {self.args.smooth_weight * total_smoothness_loss.item():.4f}, "
f"Joint smooth: {self.args.coherence_weight * joint_coherence_loss.item():.4f}, "
f"Root smooth: {self.args.root_smooth_weight * root_smooth_loss.item():.4f}"
)
pbar.set_description(loss_desc)
if iteration % 5 == 0:
self.logger.info(f"Iter {iteration}: {loss_desc}")
# Adaptive reinitialization
current_loss = total_loss.item()
if current_loss < best_loss:
best_loss = current_loss
best_params = {
'quats': quats_to_optimize.clone().detach(),
'global_quats': global_quats.clone().detach(),
'global_trans': global_trans.clone().detach()
}
patience = 0
elif (current_loss > best_loss * self.loss_divergence_factor or
patience > self.reinit_patience_threshold * 2):
# Reinitialize with best parameters
quats_to_optimize = best_params['quats'].clone().requires_grad_(True)
global_quats = best_params['global_quats'].clone().requires_grad_(True)
global_trans = best_params['global_trans'].clone().requires_grad_(True)
optimizer, scheduler = self._setup_optimizer_and_scheduler(
quats_to_optimize, global_quats, global_trans, n_iters
)
patience = 0
self.logger.info(f'Adaptive reset at iteration {iteration} with best loss: {best_loss:.6f}')
else:
patience += 1
pbar.update(1)
pbar.close()
# Prepare final results
quats_final = torch.cat([fixed_quat_0, best_params['quats']], dim=0)
# Final normalization
reshaped = quats_final.reshape(-1, 4)
norm = torch.norm(reshaped, dim=1, keepdim=True).clamp_min(1e-8)
quats_final = (reshaped / norm).reshape(batch_size, num_joints, 4)
global_quats_final = torch.cat([fixed_global_quat_0, best_params['global_quats']], dim=0)
global_trans_final = torch.cat([fixed_global_trans_0, best_params['global_trans']], dim=0)
global_quats_final = global_quats_final / torch.norm(
global_quats_final, dim=-1, keepdim=True
).clamp_min(1e-8)
return quats_final, global_quats_final, global_trans_final
def load_and_prepare_data(args):
"""Load and prepare all necessary data for optimization."""
# Define paths
base_path = f'{args.input_path}/{args.seq_name}'
mesh_path = f'{base_path}/objs/mesh.obj'
rig_path = f'{base_path}/objs/rig.txt'
img_path = f'{base_path}/imgs'
flow_dirs = f'{base_path}/flow'
# Load model
model = load_model_from_obj_and_rig(mesh_path, rig_path, device=args.device)
# Load images
img_files = sorted(glob.glob(os.path.join(img_path, "*.png")))
images = []
for f in img_files:
img = Image.open(f).convert("RGBA")
arr = np.array(img, dtype=np.float32) / 255.0
t = torch.from_numpy(arr).to(args.device)
images.append(t)
images_batch = torch.stack(images, dim=0)
return model, images_batch, flow_dirs, img_path
def setup_renderers(args):
"""Setup multiple renderers for different camera views."""
available_views = [
"front", "back", "left", "right",
"front_left", "front_right", "back_left", "back_right"
]
if args.main_renderer not in available_views:
raise ValueError(f"Main renderer '{args.main_renderer}' not found in available cameras: {available_views}")
main_cam_config = json.load(open(f"utils/cameras/{args.main_renderer}.json"))
main_renderer = MeshRenderer3D(args.device, image_size=args.img_size, cam_params=main_cam_config)
additional_views = [view.strip() for view in args.additional_renderers.split(',') if view.strip()]
if len(additional_views) > 3:
print(f"Warning: Only first 3 additional renderers will be used. Got: {additional_views}")
additional_views = additional_views[:3]
additional_renderers = {}
for view_name in additional_views:
if view_name in available_views and view_name != args.main_renderer:
cam_config = json.load(open(f"utils/cameras/{view_name}.json"))
renderer = MeshRenderer3D(args.device, image_size=args.img_size, cam_params=cam_config)
additional_renderers[f"{view_name}_renderer"] = renderer
elif view_name == args.main_renderer:
print(f"Warning: '{view_name}' is already the main renderer, skipping...")
elif view_name not in available_views:
print(f"Warning: Camera view '{view_name}' not found, skipping...")
return main_renderer, additional_renderers
def get_parser():
"""Create argument parser with all configuration options."""
parser = argparse.ArgumentParser(description="3D Rigging Optimization")
# Training parameters
training_group = parser.add_argument_group('Training')
training_group.add_argument("--iter", type=int, default=500, help="Number of training iterations")
training_group.add_argument("--img_size", type=int, default=512, help="Image resolution")
training_group.add_argument("--device", type=str, default="cuda:0", help="Device to use")
training_group.add_argument("--img_fps", type=int, default=15, help="Image frame rate")
training_group.add_argument('--main_renderer', type=str, default='front', help='Main renderer camera view (default: front)')
training_group.add_argument('--additional_renderers', type=str, default="back, right, left", help='Additional renderer views (max 3), comma-separated (e.g., "back,left,right"). ')
# Learning rates
lr_group = parser.add_argument_group('Learning Rates')
lr_group.add_argument("--lr", type=float, default=2e-3, help="Base learning rate")
lr_group.add_argument("--min_lr", type=float, default=1e-5, help="Minimum learning rate")
lr_group.add_argument("--warm_lr", type=float, default=1e-5, help="Warmup learning rate")
# Loss weights
loss_group = parser.add_argument_group('Loss Weights')
loss_group.add_argument("--smooth_weight", type=float, default=0.2)
loss_group.add_argument("--root_smooth_weight", type=float, default=1.0)
loss_group.add_argument("--coherence_weight", type=float, default=10)
loss_group.add_argument("--rgb_wt", type=float, default=1.0, help="RGB loss target ratio (relative importance)")
loss_group.add_argument("--mask_wt", type=float, default=1.0, help="Mask loss target ratio")
loss_group.add_argument("--proj_joint_wt", type=float, default=1.5, help="Joint projection loss target ratio")
loss_group.add_argument("--proj_vert_wt", type=float, default=3.0, help="Point projection loss target ratio")
loss_group.add_argument("--depth_wt", type=float, default=0.8, help="Depth loss target ratio")
loss_group.add_argument("--flow_wt", type=float, default=0.8, help="Flow loss target ratio")
# Data and output
data_group = parser.add_argument_group('Data and Output')
data_group.add_argument("--input_path", type=str, default="inputs")
data_group.add_argument("--save_path", type=str, default="results")
data_group.add_argument("--save_name", type=str, default="results")
data_group.add_argument("--seq_name", type=str, default=None)
# Flags
flag_group = parser.add_argument_group('Flags')
flag_group.add_argument('--gauss_filter', action='store_true', default=False)
return parser
def main():
parser = get_parser()
args = parser.parse_args()
# Setup output directory
out_dir = f'{args.save_path}/{args.seq_name}/{args.save_name}'
save_args(args, out_dir)
# Initialize optimizer
ani_optimizer = AnimationOptimizer(args, device=args.device)
# Setup renderers
renderer, additional_renderers = setup_renderers(args)
# Load and prepare data
model, images_batch, flow_dirs, img_path = load_and_prepare_data(args)
# Setup tracking
joint_vis_mask = visualize_joints_on_mesh(model, renderer, args.seq_name, out_dir=out_dir)
joint_vis_mask = torch.from_numpy(joint_vis_mask).float().to(args.device)
joint_project_2d = renderer.project_points(model.joints_rest)
# Setup track paths
track_2d_path = img_path.replace('imgs', 'track_2d_joints')
os.makedirs(track_2d_path, exist_ok=True)
# Load or generate tracks
if not os.listdir(track_2d_path):
print("Generating joint tracks")
tracked_joints_2d = save_track(args.seq_name, joint_project_2d, img_path, track_2d_path, out_dir)
else:
print("Loading existing joint tracks")
tracked_joints_2d = np.load(f'{track_2d_path}/pred_tracks.npy')
# Setup point tracking
vert_vis_mask = visualize_points_on_mesh(model, renderer, args.seq_name, out_dir=out_dir)
vert_vis_mask = torch.from_numpy(vert_vis_mask).float().to(args.device)
track_verts_2d, track_indices, sampled_vertex_indices = save_track_points(
vert_vis_mask, renderer, model, img_path, out_dir, args
)
vert_vis_mask = vert_vis_mask[sampled_vertex_indices]
# Run optimization
print(f"Starting optimization")
final_quats, root_quats, root_pos = ani_optimizer.optimization(
images_batch=images_batch,
model=model,
renderer=renderer,
tracked_joints_2d=tracked_joints_2d,
joint_vis_mask=joint_vis_mask,
track_verts_2d=track_verts_2d,
vert_vis_mask=vert_vis_mask,
sampled_vertex_indices=sampled_vertex_indices,
track_indices=track_indices,
flow_dirs=flow_dirs,
n_iters=args.iter,
out_dir=out_dir
)
# Save results
save_and_smooth_results(
args, model, renderer, final_quats, root_quats, root_pos,
out_dir, additional_renderers, fps=10
)
print("Optimization completed successfully")
save_final_video(args)
if __name__ == "__main__":
main() |