File size: 25,744 Bytes
08b23ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
#  Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# 
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
# 
#  http://www.apache.org/licenses/LICENSE-2.0
# 
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.


import os
import argparse
import json
import numpy as np
import logging
import glob
import torch
import torch.nn.functional as F
from PIL import Image
from tqdm import tqdm

from renderer import MeshRenderer3D
from model import RiggingModel
from utils.quat_utils import (
    compute_rest_local_positions, quat_inverse, quat_log, quat_multiply
)
from utils.loss_utils import (
    DepthModule, compute_reprojection_loss, geodesic_loss, root_motion_reg, 
    calculate_flow_loss, compute_depth_loss_normalized, joint_motion_coherence
)
from utils.data_loader import load_model_from_obj_and_rig, prepare_depth
from utils.save_utils import (
    save_args, visualize_joints_on_mesh, save_final_video,
    save_and_smooth_results, visualize_points_on_mesh, save_track_points
)
from utils.misc import warmup_then_decay
from third_partys.co_tracker.save_track import save_track

class AnimationOptimizer:
    """Main class for animation optimization with video guidance."""
    
    def __init__(self, args, device = 'cuda:0'):
        self.args = args
        self.device = device
        self.logger = self._setup_logger()
        
        # Training parameters
        self.reinit_patience_threshold = 20
        self.loss_divergence_factor = 2.0
        self.gradient_clip_norm = 1.0
        
        # Loss weights
        self.target_ratios = {
            'rgb': args.rgb_wt,        
            'flow': args.flow_wt,    
            'proj_joint': args.proj_joint_wt,   
            'proj_vert': args.proj_vert_wt,
            'depth': args.depth_wt, 
            'mask': args.mask_wt
        }
        self.loss_weights = {
            'rgb': 1.0,
            'flow': 1.0,
            'proj_joint': 1.0,
            'proj_vert': 1.0, 
            'depth': 1.0,
            'mask': 1.0
        }

    def _setup_logger(self):
        """Set up logging configuration."""
        logger = logging.getLogger("animation_optimizer")
        logger.setLevel(logging.INFO)
        
        if not logger.handlers:
            formatter = logging.Formatter(
                "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
            )
            console_handler = logging.StreamHandler()
            console_handler.setFormatter(formatter)
            logger.addHandler(console_handler)
        
        return logger
    def _add_file_handler(self, log_path):
        """Add file handler to logger."""
        file_handler = logging.FileHandler(log_path)
        formatter = logging.Formatter("%(asctime)s %(message)s")
        file_handler.setFormatter(formatter)
        self.logger.addHandler(file_handler)
    
    def _initialize_parameters(self, batch_size, num_joints):
        """Initialize optimization parameters."""
        
        # Fixed first frame quaternions (identity)
        fixed_quat_0 = torch.zeros((1, num_joints, 4), device=self.device)
        fixed_quat_0[..., 0] = 1.0
        
        # Initialize learnable quaternions for frames 1 to B-1
        learn_quats_init = torch.zeros((batch_size - 1, num_joints, 4), device=self.device)
        learn_quats_init[..., 0] = 1.0
        quats_to_optimize = learn_quats_init.clone().detach().requires_grad_(True)
        
        # Initialize global transformations
        fixed_global_quat_0 = torch.zeros((1, 4), device=self.device)
        fixed_global_quat_0[:, 0] = 1.0
        fixed_global_trans_0 = torch.zeros((1, 3), device=self.device)
        
        # Initialize learnable global transformations
        global_quats_init = torch.zeros((batch_size - 1, 4), device=self.device)
        global_quats_init[:, 0] = 1.0
        global_trans_init = torch.zeros((batch_size - 1, 3), device=self.device)
        
        global_quats = global_quats_init.clone().detach().requires_grad_(True)
        global_trans = global_trans_init.clone().detach().requires_grad_(True)
        
        return quats_to_optimize, global_quats, global_trans, fixed_quat_0, fixed_global_quat_0, fixed_global_trans_0
    
    def _setup_optimizer_and_scheduler(self, quats_to_optimize, global_quats, global_trans, n_iters):
        """Set up optimizer and learning rate scheduler."""
        
        base_lr = self.args.warm_lr
        max_lr = self.args.lr
        warmup_steps = 20
        
        min_lr = self.args.min_lr
        quat_lr = base_lr # *2
        
        optimizer = torch.optim.AdamW([
            {'params': quats_to_optimize, 'lr': quat_lr},
            {'params': global_quats, 'lr': quat_lr},
            {'params': global_trans, 'lr': base_lr}
        ])
        
        scheduler = warmup_then_decay(
            optimizer=optimizer,
            total_steps=n_iters,
            warmup_steps=warmup_steps,
            max_lr=max_lr,
            min_lr=min_lr,
            base_lr=base_lr
        )
        
        return optimizer, scheduler
    
    def _compute_smoothness_losses(self, quats_normed, all_global_quats_normed, all_global_trans, model):
        """Compute various smoothness losses."""
        
        # Rotation smoothness loss using geodesic distance
        theta = geodesic_loss(quats_normed[1:], quats_normed[:-1])
        rot_smoothness_loss = (theta ** 2).mean()
        
        # Second-order rotation smoothness (acceleration)
        omega = quat_log(quat_multiply(quat_inverse(quats_normed[:-1]), quats_normed[1:]))
        rot_acc = omega[1:] - omega[:-1]
        rot_acc_smoothness_loss = rot_acc.pow(2).mean()
        
        # Joint motion coherence loss (parent-child relative motion smoothness)
        joint_coherence_loss = joint_motion_coherence(quats_normed, model.parent_indices)
    
        # Root motion regularization
        root_pos_smooth_loss, root_quat_smooth_loss = root_motion_reg(
            all_global_quats_normed, all_global_trans
        )
        
        return rot_smoothness_loss, rot_acc_smoothness_loss, joint_coherence_loss, root_pos_smooth_loss + root_quat_smooth_loss
    
    def pre_calibrate_loss_weights(self, loss_components, target_ratios=None):
        """ calibrate loss weights """  
        loss_for_ratio = {name: loss.detach().clone() for name, loss in loss_components.items()}
        
        rgb_loss = loss_for_ratio['rgb'].item()
        
        for name, loss_val in loss_for_ratio.items():
            if name == 'rgb':
                continue
                
            if loss_val > 1e-8:
                scale_factor = rgb_loss / loss_val.item()
                target_ratio = target_ratios.get(name, 1.0)
                new_weight = self.loss_weights.get(name, 1.0) * scale_factor * target_ratio
                
                self.loss_weights[name] = new_weight

    def _compute_losses(
        self,
        model,
        renderer,
        images_batch,
        tracked_joints_2d,
        joint_vis_mask,
        track_verts_2d,
        vert_vis_mask,
        sampled_vertex_indices,
        track_indices,
        flow_dirs,
        depth_gt_raw,
        mask,
        out_dir,
        iteration
    ):
        """Compute all losses for the optimization."""
        
        batch_size = images_batch.shape[0]
        meshes = [model.get_mesh(t) for t in range(batch_size)]
        pred_images_all = renderer.render_batch(meshes)
        
        # 2D projection losses
        pred_joints_3d = model.joint_positions
        proj_joint_loss = compute_reprojection_loss(
            renderer, joint_vis_mask, pred_joints_3d,
            tracked_joints_2d, self.args.img_size
        )
        
        pred_points_3d = model.deformed_vertices[0]
        proj_vert_loss = compute_reprojection_loss(
            renderer, vert_vis_mask,
            pred_points_3d[:, sampled_vertex_indices],
            track_verts_2d[:, track_indices],
            self.args.img_size
        )
        
        # RGB loss
        pred_rgb = pred_images_all[..., :3]
        real_rgb = images_batch[..., :3]
        diff_rgb_masked = (pred_rgb - real_rgb) * mask.unsqueeze(-1)
        
        mse_rgb_num = (diff_rgb_masked ** 2).sum()
        mse_rgb_den = mask.sum() * 3
        rgb_loss = mse_rgb_num / mse_rgb_den.clamp_min(1e-8)
        
        # Mask loss
        silhouette_soft = renderer.render_silhouette_batch(meshes).squeeze()
        mask_loss = F.binary_cross_entropy(silhouette_soft, mask)
        
        # Depth losses
        fragments = renderer.get_rasterization_fragments(meshes)
        zbuf_depths = fragments.zbuf[..., 0]
        depth_loss = compute_depth_loss_normalized(depth_gt_raw, zbuf_depths, mask)
        
        # Flow losses
        flow_loss = calculate_flow_loss(flow_dirs, self.device, mask, renderer, model)
        
        loss_components = {
            'rgb': rgb_loss,
            'proj_joint': proj_joint_loss,
            'proj_vert': proj_vert_loss,
            'depth': depth_loss,
            'flow': flow_loss,
            'mask': mask_loss
        }
        
        return loss_components

    def optimization(
        self,
        images_batch,
        model,
        renderer,
        tracked_joints_2d,
        joint_vis_mask,
        track_verts_2d,
        vert_vis_mask,
        sampled_vertex_indices,
        track_indices,
        flow_dirs,
        n_iters,
        out_dir):
        """
        Optimize animation parameters with fixed first frame.
        """
        torch.autograd.set_detect_anomaly(True)
        
        batch_size, _, _, _ = images_batch.shape
        num_joints = model.joints_rest.shape[0]
        
        # Setup output directory and logging
        os.makedirs(out_dir, exist_ok=True)
        log_path = os.path.join(out_dir, "optimization.log")
        self._add_file_handler(log_path)
        
        # Initialize parameters
        (quats_to_optimize, global_quats, global_trans, 
         fixed_quat_0, fixed_global_quat_0, fixed_global_trans_0) = self._initialize_parameters(batch_size, num_joints)
        
        # Setup rest positions and bind matrices
        rest_local_pos = compute_rest_local_positions(model.joints_rest, model.parent_indices)
        model.initialize_bind_matrices(rest_local_pos)

        # Setup optimizer and scheduler
        optimizer, scheduler = self._setup_optimizer_and_scheduler(
            quats_to_optimize, global_quats, global_trans, n_iters
        )
        
        # Initialize depth module and flow weights
        depth_module = DepthModule(
            encoder='vitl',
            device=self.device,
            input_size=images_batch.shape[1],
            fp32=False
        )
        
        # Prepare masks
        real_rgb = images_batch[..., :3]
        threshold = 0.95
        with torch.no_grad():
            background_mask = (real_rgb > threshold).all(dim=-1)
            mask = (~background_mask).float()
        
        depth_gt_raw = prepare_depth(
            flow_dirs.replace('flow', 'depth'), real_rgb, self.device, depth_module
        )
        
        # Optimization tracking
        best_loss = float('inf')
        patience = 0
        best_params = None
        
        pbar = tqdm(total=n_iters, desc="Optimizing animation")

        for iteration in range(n_iters):
            # Combine fixed and learnable parameters
            quats_all = torch.cat([fixed_quat_0, quats_to_optimize], dim=0)
            
            # Normalize quaternions
            reshaped = quats_all.reshape(-1, 4)
            norm = torch.norm(reshaped, dim=1, keepdim=True).clamp_min(1e-8)
            quats_normed = (reshaped / norm).reshape(batch_size, num_joints, 4)
            
            # Global transformations
            all_global_quats = torch.cat([fixed_global_quat_0, global_quats], dim=0)
            all_global_trans = torch.cat([fixed_global_trans_0, global_trans], dim=0)
            all_global_quats_normed = all_global_quats / torch.norm(
                all_global_quats, dim=-1, keepdim=True
            ).clamp_min(1e-8)
            
            # Compute smoothness losses
            (rot_smoothness_loss, rot_acc_smoothness_loss, joint_coherence_loss,
            root_smooth_loss) = self._compute_smoothness_losses(
                quats_normed, all_global_quats_normed, all_global_trans, model
            )
            
            # animate model
            model.animate(quats_normed, all_global_quats_normed, all_global_trans)
            
            # Verify first frame hasn't changed
            verts0 = model.vertices[0]
            de0 = model.deformed_vertices[0][0]
            assert torch.allclose(de0, verts0, atol=1e-2), "First frame vertices have changed!"
            
            # Compute all losses
            loss_components = self._compute_losses(
                model, renderer, images_batch, tracked_joints_2d, joint_vis_mask,
                track_verts_2d, vert_vis_mask, sampled_vertex_indices, track_indices,
                flow_dirs, depth_gt_raw, mask, out_dir, iteration
            )
            
            total_smoothness_loss = rot_smoothness_loss + rot_acc_smoothness_loss * 10 
            
            if iteration == 0:
                self.pre_calibrate_loss_weights(loss_components, self.target_ratios)

            total_loss = (
                loss_components['rgb'] +
                self.loss_weights['mask'] * loss_components['mask'] +
                self.loss_weights['flow'] * loss_components['flow'] +
                self.loss_weights['proj_joint'] * loss_components['proj_joint'] +
                self.loss_weights['proj_vert'] * loss_components['proj_vert'] +
                self.loss_weights['depth'] * loss_components['depth'] +
                self.args.smooth_weight * total_smoothness_loss +
                self.args.coherence_weight * joint_coherence_loss +
                self.args.root_smooth_weight * root_smooth_loss
            )
            
            # Optimization step
            optimizer.zero_grad()
            total_loss.backward()
            torch.nn.utils.clip_grad_norm_(
                [quats_to_optimize, global_quats, global_trans],
                max_norm=self.gradient_clip_norm
            )
            optimizer.step()
            scheduler.step()
            
            # Update progress bar and logging
            loss_desc = (
                f"Loss: {total_loss.item():.4f}, "
                f"RGB: {loss_components['rgb'].item():.4f}, "
                f"Mask: {self.loss_weights['mask'] * loss_components['mask'].item():.4f}, "
                f"Flow: {self.loss_weights['flow'] * loss_components['flow'].item():.4f}, "
                f"Proj_joint: {self.loss_weights['proj_joint'] * loss_components['proj_joint'].item():.4f}, "
                f"Proj_vert: {self.loss_weights['proj_vert'] * loss_components['proj_vert'].item():.4f}, "
                f"Depth: {self.loss_weights['depth'] * loss_components['depth'].item():.4f}, "
                f"Smooth: {self.args.smooth_weight * total_smoothness_loss.item():.4f}, "
                f"Joint smooth: {self.args.coherence_weight * joint_coherence_loss.item():.4f}, "
                f"Root smooth: {self.args.root_smooth_weight * root_smooth_loss.item():.4f}"
            )
            pbar.set_description(loss_desc)
            
            if iteration % 5 == 0:
                self.logger.info(f"Iter {iteration}: {loss_desc}")
            
            # Adaptive reinitialization
            current_loss = total_loss.item()
            if current_loss < best_loss:
                best_loss = current_loss
                best_params = {
                    'quats': quats_to_optimize.clone().detach(),
                    'global_quats': global_quats.clone().detach(),
                    'global_trans': global_trans.clone().detach()
                }
                patience = 0
            elif (current_loss > best_loss * self.loss_divergence_factor or 
                  patience > self.reinit_patience_threshold * 2):
                # Reinitialize with best parameters
                quats_to_optimize = best_params['quats'].clone().requires_grad_(True)
                global_quats = best_params['global_quats'].clone().requires_grad_(True)
                global_trans = best_params['global_trans'].clone().requires_grad_(True)
                
                optimizer, scheduler = self._setup_optimizer_and_scheduler(
                    quats_to_optimize, global_quats, global_trans, n_iters
                )
                patience = 0
                self.logger.info(f'Adaptive reset at iteration {iteration} with best loss: {best_loss:.6f}')
            else:
                patience += 1
            
            pbar.update(1)
        
        pbar.close()
        
        # Prepare final results
        quats_final = torch.cat([fixed_quat_0, best_params['quats']], dim=0)
        
        # Final normalization
        reshaped = quats_final.reshape(-1, 4)
        norm = torch.norm(reshaped, dim=1, keepdim=True).clamp_min(1e-8)
        quats_final = (reshaped / norm).reshape(batch_size, num_joints, 4)
        
        global_quats_final = torch.cat([fixed_global_quat_0, best_params['global_quats']], dim=0)
        global_trans_final = torch.cat([fixed_global_trans_0, best_params['global_trans']], dim=0)
        global_quats_final = global_quats_final / torch.norm(
            global_quats_final, dim=-1, keepdim=True
        ).clamp_min(1e-8)
        
        return quats_final, global_quats_final, global_trans_final

def load_and_prepare_data(args):
    """Load and prepare all necessary data for optimization."""
    
    # Define paths
    base_path = f'{args.input_path}/{args.seq_name}'
    mesh_path = f'{base_path}/objs/mesh.obj'
    rig_path = f'{base_path}/objs/rig.txt'
    img_path = f'{base_path}/imgs'
    flow_dirs = f'{base_path}/flow'
    
    # Load model
    model = load_model_from_obj_and_rig(mesh_path, rig_path, device=args.device)
    
    # Load images
    img_files = sorted(glob.glob(os.path.join(img_path, "*.png")))
    images = []
    for f in img_files:
        img = Image.open(f).convert("RGBA")
        arr = np.array(img, dtype=np.float32) / 255.0
        t = torch.from_numpy(arr).to(args.device)
        images.append(t)
    
    images_batch = torch.stack(images, dim=0)
    
    return model, images_batch, flow_dirs, img_path

def setup_renderers(args):
    """Setup multiple renderers for different camera views."""
    
    available_views = [
        "front", "back", "left", "right",
        "front_left", "front_right", "back_left", "back_right"
    ]
    
    if args.main_renderer not in available_views:
        raise ValueError(f"Main renderer '{args.main_renderer}' not found in available cameras: {available_views}")
    
    main_cam_config = json.load(open(f"utils/cameras/{args.main_renderer}.json"))
    main_renderer = MeshRenderer3D(args.device, image_size=args.img_size, cam_params=main_cam_config)
    
    additional_views = [view.strip() for view in args.additional_renderers.split(',') if view.strip()]
    if len(additional_views) > 3:
        print(f"Warning: Only first 3 additional renderers will be used. Got: {additional_views}")
        additional_views = additional_views[:3]
    
    additional_renderers = {}
    for view_name in additional_views:
        if view_name in available_views and view_name != args.main_renderer:
            cam_config = json.load(open(f"utils/cameras/{view_name}.json"))
            renderer = MeshRenderer3D(args.device, image_size=args.img_size, cam_params=cam_config)
            additional_renderers[f"{view_name}_renderer"] = renderer
        elif view_name == args.main_renderer:
            print(f"Warning: '{view_name}' is already the main renderer, skipping...")
        elif view_name not in available_views:
            print(f"Warning: Camera view '{view_name}' not found, skipping...")
    
    return main_renderer, additional_renderers

def get_parser():
    """Create argument parser with all configuration options."""
    
    parser = argparse.ArgumentParser(description="3D Rigging Optimization")
    
    # Training parameters
    training_group = parser.add_argument_group('Training')
    training_group.add_argument("--iter", type=int, default=500, help="Number of training iterations")
    training_group.add_argument("--img_size", type=int, default=512, help="Image resolution")
    training_group.add_argument("--device", type=str, default="cuda:0", help="Device to use")
    training_group.add_argument("--img_fps", type=int, default=15, help="Image frame rate")
    training_group.add_argument('--main_renderer', type=str, default='front', help='Main renderer camera view (default: front)')
    training_group.add_argument('--additional_renderers', type=str, default="back, right, left", help='Additional renderer views (max 3), comma-separated (e.g., "back,left,right"). ')
    
    # Learning rates
    lr_group = parser.add_argument_group('Learning Rates')
    lr_group.add_argument("--lr", type=float, default=2e-3, help="Base learning rate")
    lr_group.add_argument("--min_lr", type=float, default=1e-5, help="Minimum learning rate")
    lr_group.add_argument("--warm_lr", type=float, default=1e-5, help="Warmup learning rate")
    
    # Loss weights
    loss_group = parser.add_argument_group('Loss Weights')
    loss_group.add_argument("--smooth_weight", type=float, default=0.2)
    loss_group.add_argument("--root_smooth_weight", type=float, default=1.0)
    loss_group.add_argument("--coherence_weight", type=float, default=10)
    loss_group.add_argument("--rgb_wt", type=float, default=1.0, help="RGB loss target ratio (relative importance)")
    loss_group.add_argument("--mask_wt", type=float, default=1.0, help="Mask loss target ratio") 
    loss_group.add_argument("--proj_joint_wt", type=float, default=1.5, help="Joint projection loss target ratio")
    loss_group.add_argument("--proj_vert_wt", type=float, default=3.0, help="Point projection loss target ratio")
    loss_group.add_argument("--depth_wt", type=float, default=0.8, help="Depth loss target ratio")
    loss_group.add_argument("--flow_wt", type=float, default=0.8, help="Flow loss target ratio")

    # Data and output
    data_group = parser.add_argument_group('Data and Output')
    data_group.add_argument("--input_path", type=str, default="inputs")
    data_group.add_argument("--save_path", type=str, default="results")
    data_group.add_argument("--save_name", type=str, default="results")
    data_group.add_argument("--seq_name", type=str, default=None)
    
    # Flags
    flag_group = parser.add_argument_group('Flags')
    flag_group.add_argument('--gauss_filter', action='store_true', default=False)
    return parser

def main():
    parser = get_parser()
    args = parser.parse_args()
    
    # Setup output directory
    out_dir = f'{args.save_path}/{args.seq_name}/{args.save_name}'
    save_args(args, out_dir)
    
    # Initialize optimizer
    ani_optimizer = AnimationOptimizer(args, device=args.device)
    
    # Setup renderers
    renderer, additional_renderers = setup_renderers(args)

    # Load and prepare data
    model, images_batch, flow_dirs, img_path = load_and_prepare_data(args)
    
    # Setup tracking
    joint_vis_mask = visualize_joints_on_mesh(model, renderer, args.seq_name, out_dir=out_dir)
    joint_vis_mask = torch.from_numpy(joint_vis_mask).float().to(args.device)
    
    joint_project_2d = renderer.project_points(model.joints_rest)
    
    # Setup track paths
    track_2d_path = img_path.replace('imgs', 'track_2d_joints')
    os.makedirs(track_2d_path, exist_ok=True)
    
    # Load or generate tracks
    if not os.listdir(track_2d_path):
        print("Generating joint tracks")
        tracked_joints_2d = save_track(args.seq_name, joint_project_2d, img_path, track_2d_path, out_dir)
    else:
        print("Loading existing joint tracks")
        tracked_joints_2d = np.load(f'{track_2d_path}/pred_tracks.npy')
    
    # Setup point tracking
    vert_vis_mask = visualize_points_on_mesh(model, renderer, args.seq_name, out_dir=out_dir)
    vert_vis_mask = torch.from_numpy(vert_vis_mask).float().to(args.device)
    
    track_verts_2d, track_indices, sampled_vertex_indices = save_track_points(
        vert_vis_mask, renderer, model, img_path, out_dir, args
    )
    vert_vis_mask = vert_vis_mask[sampled_vertex_indices]
    
    # Run optimization
    print(f"Starting optimization")
    final_quats, root_quats, root_pos = ani_optimizer.optimization(
        images_batch=images_batch,
        model=model,
        renderer=renderer,
        tracked_joints_2d=tracked_joints_2d,
        joint_vis_mask=joint_vis_mask,
        track_verts_2d=track_verts_2d,
        vert_vis_mask=vert_vis_mask,
        sampled_vertex_indices=sampled_vertex_indices,
        track_indices=track_indices,
        flow_dirs=flow_dirs,
        n_iters=args.iter,
        out_dir=out_dir
    )
    
    # Save results
    save_and_smooth_results(
        args, model, renderer, final_quats, root_quats, root_pos,
        out_dir, additional_renderers, fps=10
    )
    
    print("Optimization completed successfully")
    save_final_video(args)
    

if __name__ == "__main__":
    main()