File size: 15,739 Bytes
08b23ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
#  Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# 
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
# 
#  http://www.apache.org/licenses/LICENSE-2.0
# 
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from third_partys.Video_Depth_Anything.video_depth_anything.video_depth import VideoDepthAnything
import torch
import torch.nn as nn
import numpy as np
import igl
import cv2
import time
import torch.nn.functional as F
from utils.quat_utils import quat_inverse, quat_log, quat_multiply, normalize_quaternion
from pytorch3d.structures import join_meshes_as_scene, join_meshes_as_batch
import os
from pathlib import Path

class DepthModule:
    def __init__(self, encoder='vitl', device='cuda', input_size=518, fp32=False):
        """
        Initialize the depth loss module with Video Depth Anything
        
        Args:
            encoder: 'vitl' or 'vits'
            device: device to run the model on
            input_size: input size for the model
            fp32: whether to use float32 for inference
        """
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.input_size = input_size
        self.fp32 = fp32
        
        # Initialize model configuration
        model_configs = {
            'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
            'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
        }
        
        # Load Video Depth Anything model
        self.video_depth_model = VideoDepthAnything(**model_configs[encoder])
        self.video_depth_model.load_state_dict(
            torch.load(f'./third_partys/Video_Depth_Anything/ckpt/video_depth_anything_{encoder}.pth', map_location='cpu'), 
            strict=True
        )
        self.video_depth_model = self.video_depth_model.to(self.device).eval()
        for param in self.video_depth_model.parameters():
            param.requires_grad = False 
    
    def get_depth_maps(self, frames, target_fps=30):
        """
        Get depth maps for video frames
        """
        depths, _ = self.video_depth_model.infer_video_depth(
            frames, 
            target_fps, 
            input_size=self.input_size, 
            device=self.device, 
            fp32=self.fp32
        )
        return depths
    
def save_depth_as_images(depth_np, output_dir='./depth_images'):
    """save depth images"""
    os.makedirs(output_dir, exist_ok=True)
    
    for i, depth_map in enumerate(depth_np):
        depth_map = depth_map.detach().cpu().numpy()  
        valid_mask = (depth_map > 0)
        if not valid_mask.any():
            continue
            
        valid_min = depth_map[valid_mask].min()
        valid_max = depth_map[valid_mask].max()
        
        normalized = np.zeros_like(depth_map)
        normalized[valid_mask] = 255.0 * (depth_map[valid_mask] - valid_min) / (valid_max - valid_min)
    
        depth_img = normalized.astype(np.uint8)
        
        cv2.imwrite(os.path.join(output_dir, f'depth_{i:04d}.png'), depth_img)
        
    print(f"Save {len(depth_np)} depth images to {output_dir}")

def compute_visibility_mask_igl(ray_origins, ray_dirs, distances, verts, faces, distance_tolerance=1e-6, for_vertices=False):
    """
    Compute visibility mask using IGL ray-mesh intersection.
    """
    num_rays = ray_origins.shape[0]
    visibility_mask = np.ones(num_rays, dtype=bool)

    for i in range(num_rays):
        ray_origin = ray_origins[i].reshape(1, 3)
        ray_dir = ray_dirs[i].reshape(1, 3)
        intersections = igl.ray_mesh_intersect(ray_origin, ray_dir, verts, faces)
        if intersections:
            # Count intersections that occur before the target point
            count = sum(1 for h in intersections if h[4] < distances[i] - distance_tolerance)
            # count=0 → ray completely missed the mesh; count=1 → ray stops exactly at the face containing the joint
            # count>1 → ray was blocked by other faces along the way
            if for_vertices:
                if count != 1:
                    visibility_mask[i] = False
            else: # for joints
                if count > 2:
                    visibility_mask[i] = False

    return visibility_mask

def compute_reprojection_loss(renderer, vis_mask, predicted_joints, tracked_joints_2d, image_size):
    """
    Compute reprojection loss between predicted 3D points and tracked 2D points.
    """
    if predicted_joints.dim() != 3:
        raise ValueError(f"predicted_joints must be 3D tensor, got shape {predicted_joints.shape}")
    
    B, J, _ = predicted_joints.shape
    device = predicted_joints.device
    
    # Project 3D joints to 2D screen coordinates
    projected = renderer.camera.transform_points_screen(
        predicted_joints, 
        image_size=[image_size, image_size]
    )
    projected_2d = projected[..., :2]  # (B, J, 2)
   
    # Convert and validate tracked joints
    if not isinstance(tracked_joints_2d, torch.Tensor):
        tracked_joints_2d = torch.from_numpy(tracked_joints_2d).float()
    tracked_joints_2d = tracked_joints_2d.to(device)
   
    if tracked_joints_2d.dim() == 2:
        tracked_joints_2d = tracked_joints_2d.unsqueeze(0).expand(B, -1, -1)

    vis_mask = vis_mask.to(device).float()

    num_visible = vis_mask.sum()
    if num_visible == 0:
        # No visible joints - return zero loss
        return torch.tensor(0.0, device=device, requires_grad=True)
    
    squared_diff = (projected_2d - tracked_joints_2d).pow(2).sum(dim=-1)  # (B, J)
    
    vis_mask_expanded = vis_mask.unsqueeze(0)  # (1, J)
    masked_loss = squared_diff * vis_mask_expanded  # (B, J)
    per_frame_loss = masked_loss.sum(dim=1) / num_visible  # (B,)
    final_loss = per_frame_loss.mean()  # scalar

    return final_loss

def geodesic_loss(q1, q2, eps=1e-6):
    """
    Compute geodesic distance loss between batches of quaternions for rot smooth loss.
    """
    q1_norm = normalize_quaternion(q1, eps=eps)
    q2_norm = normalize_quaternion(q2, eps=eps)
   
    dot_product = (q1_norm * q2_norm).sum(dim=-1, keepdim=True)
    q2_corrected = torch.where(dot_product < 0, -q2_norm, q2_norm)
    inner_product = (q1_norm * q2_corrected).sum(dim=-1)
   
    # Clamp to valid range for arccos to avoid numerical issues
    inner_product_clamped = torch.clamp(inner_product, min=-1.0 + eps, max=1.0 - eps)
    theta = 2.0 * torch.arccos(torch.abs(inner_product_clamped))

    return theta

def root_motion_reg(root_quats, root_pos):
    return ((root_pos[1:] - root_pos[:-1])**2).mean(), (geodesic_loss(root_quats[1:], root_quats[:-1])**2).mean()

def joint_motion_coherence(quats_normed, parent_idx):
    """
    Compute joint motion coherence loss to enforce smooth relative motion between parent-child joints.
    """
    coherence_loss = 0
    
    for j, parent in enumerate(parent_idx):
        if parent != -1:  # Skip root joint
            parent_rot = quats_normed[:, parent]  # (T, 4)
            child_rot = quats_normed[:, j]        # (T, 4)
            
            # Compute relative rotation of child w.r.t. parent's local frame
            # local_rot = parent_rot^(-1) * child_rot
            local_rot = quat_multiply(quat_inverse(parent_rot), child_rot)
            local_rot_velocity = local_rot[1:] - local_rot[:-1]  #  (T-1, 4)

            coherence_loss += local_rot_velocity.pow(2).mean()
    
    return coherence_loss

def read_flo_file(file_path):
    """
    Read optical flow from .flo format file.
    """
    with open(file_path, 'rb') as f:
        magic = np.fromfile(f, np.float32, count=1)
        if len(magic) == 0 or magic[0] != 202021.25:
               raise ValueError(f'Invalid .flo file format: magic number {magic}')
           
        w = np.fromfile(f, np.int32, count=1)[0]
        h = np.fromfile(f, np.int32, count=1)[0]
        data = np.fromfile(f, np.float32, count=2*w*h)
        flow = data.reshape(h, w, 2)
    return flow

def load_optical_flows(flow_dir, num_frames):
    """
    Load sequence of optical flow files.
    """
    flow_dir = Path(flow_dir)
    flows = []
    
    for i in range(num_frames - 1):
        flow_path = flow_dir / f'flow_{i:04d}.flo'
        if flow_path.exists():
            flow = read_flo_file(flow_path)
            flows.append(flow)
        else:
            raise ValueError("No flow files found")
    
    return np.stack(flows, axis=0)

def rasterize_vertex_flow(flow_vertices, meshes, faces, image_size, renderer, eps = 1e-8):
    """
    Rasterize per-vertex flow to dense flow field using barycentric interpolation.
    """
    B, V, _ = flow_vertices.shape
    device = flow_vertices.device
    
    if isinstance(image_size, int):
        H = W = image_size
    else:
        H, W = image_size
    
    batch_meshes = join_meshes_as_batch([join_meshes_as_scene(m) for m in meshes]).to(device)
    fragments    = renderer.renderer.rasterizer(batch_meshes)
   
    pix_to_face = fragments.pix_to_face    # (B, H, W, K)
    bary_coords = fragments.bary_coords    # (B, H, W, K, 3)

    flow_scene_list = []
    for mesh_idx in range(B):
        mesh = meshes[mesh_idx]
        V_mesh = mesh.verts_packed().shape[0]
        
        if V_mesh > flow_vertices.shape[1]:
            raise ValueError(f"Mesh {mesh_idx} has {V_mesh} vertices but flow has {flow_vertices.shape[1]}")
        
        flow_scene_list.append(flow_vertices[mesh_idx, :V_mesh])
    

    flow_vertices_scene = torch.cat(flow_scene_list, dim=0).to(device)
    faces_scene = batch_meshes.faces_packed() 

    flow_pred = torch.zeros(B, H, W, 2, device=device)
    valid = pix_to_face[..., 0] >= 0
    
    for b in range(B):
        b_valid = valid[b]  # (H,W)
        if torch.count_nonzero(b_valid) == 0:
            print(f"No valid pixels found for batch {b}")
            continue
            
        valid_indices = torch.nonzero(b_valid, as_tuple=True)
        h_indices, w_indices = valid_indices
        
        face_idxs = pix_to_face[b, h_indices, w_indices, 0]  # (N,)
        bary = bary_coords[b, h_indices, w_indices, 0]       # (N,3)
        
        max_face_idx = faces_scene.shape[0] - 1
        if face_idxs.max() > max_face_idx:
            raise RuntimeError(f"Face index {face_idxs.max()} exceeds max {max_face_idx}")
       
        face_verts = faces_scene[face_idxs]  # (N, 3)
        f0, f1, f2 = face_verts.unbind(-1)  # Each (N,)
       
        max_vert_idx = flow_vertices_scene.shape[0] - 1
        if max(f0.max(), f1.max(), f2.max()) > max_vert_idx:
            raise RuntimeError(f"Vertex index exceeds flow_vertices_scene size {max_vert_idx}")
       
        v0_flow = flow_vertices_scene[f0]  # (N, 2)
        v1_flow = flow_vertices_scene[f1]  # (N, 2)
        v2_flow = flow_vertices_scene[f2]  # (N, 2)
        
        # Interpolate using barycentric coordinates
        b0, b1, b2 = bary.unbind(-1)  # Each (N,)
        
        # Ensure barycentric coordinates sum to 1 (numerical stability)
        bary_sum = b0 + b1 + b2
        b0 = b0 / (bary_sum + eps)
        b1 = b1 / (bary_sum + eps)
        b2 = b2 / (bary_sum + eps)
        
        flow_interpolated = (
            b0.unsqueeze(-1) * v0_flow + 
            b1.unsqueeze(-1) * v1_flow + 
            b2.unsqueeze(-1) * v2_flow
        )  # (N, 2)
        
        # Update flow prediction
        flow_pred[b, h_indices, w_indices] = flow_interpolated
    
    return flow_pred

def calculate_flow_loss(flow_dir, device, mask, renderer, model):
    """
    Calculate optical flow loss with improved error handling and flexibility.
    """
    if device is None:
        device = mask.device
    
    T = mask.shape[0]
    H, W = mask.shape[1:3]

    if mask.shape[0] == T:
        flow_mask = mask[1:] # Use frames 1 to T-1
    else:
        flow_mask = mask 
        
    flows_np = load_optical_flows(flow_dir, T)
    flow_gt = torch.from_numpy(flows_np).float().to(device)  # [T-1, H, W, 2]
    
    vertices = model.deformed_vertices[0] # (T,V,3)
    # Project vertices to get 2D flow
    proj_t  = renderer.project_points(vertices[:-1])    # (T-1,V,2) in pixels
    proj_tp = renderer.project_points(vertices[1:])
    vertex_flow  = proj_tp - proj_t                      # (T-1,V,2) Δx,Δy

    meshes = [model.get_mesh(t) for t in range(T)]
    flow_pred = rasterize_vertex_flow(vertex_flow, meshes, model.faces[0], (H,W), renderer)  # (B,H,W,2)
    
    eps = 1e-3
    diff = (flow_pred - flow_gt) * flow_mask.unsqueeze(-1) # (T-1, H, W, 2)
    loss = torch.sqrt(diff.pow(2).sum(dim=-1) + eps**2)  # Charbonnier loss
    loss = loss.sum() / (flow_mask.sum() + 1e-6)
    
    return loss

def normalize_depth_from_reference(depth_maps, reference_idx=0, invalid_value=-1.0, invert=False, eps = 1e-8):
    """
    Normalize depth maps based on a reference frame with improved robustness.
    """
    if depth_maps.dim() != 3:
        raise ValueError(f"Expected depth_maps with 3 dimensions, got {depth_maps.dim()}")
    
    T, H, W = depth_maps.shape
    device = depth_maps.device
    
    reference_depth = depth_maps[reference_idx]
    valid_mask = (
        (reference_depth != invalid_value) & 
        (reference_depth > 1e-8) &  # Avoid very small positive values
        torch.isfinite(reference_depth)  # Exclude inf/nan
    )

    valid_values = reference_depth[valid_mask]
    min_depth = torch.quantile(valid_values, 0.01)  # 1st percentile
    max_depth = torch.quantile(valid_values, 0.99)  # 99th percentile
    
    depth_range = max_depth - min_depth
    if depth_range < eps:
        logger.warning(f"Very small depth range ({depth_range:.6f}), using fallback normalization")
        min_depth = valid_values.min()
        max_depth = valid_values.max()
        depth_range = max(max_depth - min_depth, eps)
    
    scale = 1.0 / (max_depth - min_depth)
    offset = -min_depth * scale
    
    all_valid_mask = (
        (depth_maps != invalid_value) & 
        (depth_maps > eps) &
        torch.isfinite(depth_maps)
    )

    normalized_depths = torch.full_like(depth_maps, invalid_value)
    
    if all_valid_mask.any():
        normalized_values = depth_maps[all_valid_mask] * scale + offset
        
        if invert:
            normalized_values = 1.0 - normalized_values
        
        normalized_depths[all_valid_mask] = normalized_values
    
    return normalized_depths, scale.item(), offset.item()

def compute_depth_loss_normalized(mono_depths, zbuf_depths, mask):
    """
    Compute normalized depth loss.
    """ 
    device = zbuf_depths.device
    # Normalize both depth types
    zbuf_norm, z_scale, z_offset = normalize_depth_from_reference(zbuf_depths)
    mono_norm, m_scale, m_offset = normalize_depth_from_reference(mono_depths, invert=True)
    
    valid_zbuf = (zbuf_norm >= 0) & (zbuf_norm <= 1)
    valid_mono = (mono_norm >= 0) & (mono_norm <= 1)
    if mask.dtype != torch.bool:
        mask = mask > 0.5
    combined_mask = mask & valid_zbuf & valid_mono
    
    num_valid = combined_mask.sum().item()
    if num_valid == 0:
        print("No valid pixels for depth loss computation")
        return torch.tensor(0.0, device=device, requires_grad=True)
    
    depth_diff = (zbuf_norm - mono_norm) * combined_mask.float()
    loss = (depth_diff**2).sum() / num_valid
    
    return loss