File size: 5,707 Bytes
08b23ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#  Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# 
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
# 
#  http://www.apache.org/licenses/LICENSE-2.0
# 
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import torch
from typing import List, Tuple, Optional

EPS = 1e-8

def normalize_quaternion(quat: torch.Tensor, eps: float = EPS) -> torch.Tensor:
    """
    Normalize quaternions to unit length.
    
    Args:
        quat: Quaternion tensor of shape (..., 4) with (w, x, y, z) format
        eps: Small value for numerical stability
        
    Returns:
        Normalized quaternions of same shape
    """
    norm = torch.norm(quat, dim=-1, keepdim=True)
    return quat / torch.clamp(norm, min=eps)

def quat_multiply(q1: torch.Tensor, q2: torch.Tensor) -> torch.Tensor:
    """
    Multiply two quaternions using Hamilton product.
    """
    w1, x1, y1, z1 = torch.unbind(q1, dim=-1)
    w2, x2, y2, z2 = torch.unbind(q2, dim=-1)

    w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
    x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
    y = w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2
    z = w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2
    
    return torch.stack((w, x, y, z), dim=-1)

def quat_conjugate(quat: torch.Tensor) -> torch.Tensor:
    """
    Compute quaternion conjugate.
    """
    w, xyz = quat[..., :1], quat[..., 1:]
    return torch.cat([w, -xyz], dim=-1)

def quat_inverse(quat: torch.Tensor, eps: float = EPS) -> torch.Tensor:
    """
    Compute quaternion inverse.
    """
    conjugate = quat_conjugate(quat)
    norm_squared = torch.sum(quat * quat, dim=-1, keepdim=True)
    return conjugate / torch.clamp(norm_squared, min=eps)

def quat_log(quat: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
    """
    Compute quaternion logarithm, mapping to rotation vectors (axis-angle).
    """
    # quat_norm = normalize_quaternion(quat, eps)
    q_norm = torch.sqrt(torch.sum(quat * quat, dim=-1, keepdim=True))
    quat_norm = quat / torch.clamp(q_norm, min=eps)
    
    w = quat_norm[..., 0:1]    # Scalar part
    xyz = quat_norm[..., 1:]   # Vector part
    
    xyz_norm = torch.norm(xyz, dim=-1, keepdim=True)
    w_clamped = torch.clamp(w, min=-1.0 + eps, max=1.0 - eps)
    
    # half-angle
    half_angle = torch.acos(torch.abs(w_clamped))
    
    safe_xyz_norm = torch.clamp(xyz_norm, min=eps)
    
    # Scale factor
    scale = torch.where(
        xyz_norm < eps,
        torch.ones_like(xyz_norm), 
        half_angle / safe_xyz_norm 
    )
    
    # Handle quaternion sign ambiguity (q and -q represent same rotation)
    sign = torch.where(w >= 0, torch.ones_like(w), -torch.ones_like(w))
    
    rotation_vector = sign * scale * xyz
    
    return rotation_vector

def quat_rotate_vector(quat: torch.Tensor, vec: torch.Tensor) -> torch.Tensor:
    """
    Rotate a 3D vector by a quaternion.
    """
    q_vec = quat[..., 1:]  # vector part
    q_w = quat[..., 0:1]   # scalar part
    
    cross1 = torch.cross(q_vec, vec, dim=-1)
    cross2 = torch.cross(q_vec, cross1, dim=-1)
    
    # Apply the rotation formula
    rotated_vec = vec + 2.0 * q_w * cross1 + 2.0 * cross2
    
    return rotated_vec

def quat_to_rotation_matrix(quat: torch.Tensor, eps: float = EPS) -> torch.Tensor:
    """
    Convert quaternions to rotation matrices.
    """
    quat_norm = normalize_quaternion(quat, eps)
    w, x, y, z = torch.unbind(quat_norm, dim=-1)
    
    xx, yy, zz = x * x, y * y, z * z
    xy, xz, yz = x * y, x * z, y * z
    wx, wy, wz = w * x, w * y, w * z
    
    r00 = 1.0 - 2.0 * (yy + zz)
    r01 = 2.0 * (xy - wz)
    r02 = 2.0 * (xz + wy)
    
    r10 = 2.0 * (xy + wz)
    r11 = 1.0 - 2.0 * (xx + zz)
    r12 = 2.0 * (yz - wx)
    
    r20 = 2.0 * (xz - wy)
    r21 = 2.0 * (yz + wx)
    r22 = 1.0 - 2.0 * (xx + yy)
    
    rotation_matrix = torch.stack([
        r00, r01, r02,
        r10, r11, r12,
        r20, r21, r22
    ], dim=-1)
    
    return rotation_matrix.reshape(quat.shape[:-1] + (3, 3))

def quat_to_transform_matrix(quat: torch.Tensor, pos: torch.Tensor) -> torch.Tensor:
    """
    Convert quaternion and position to 4x4 transformation matrix.
    """
    # rotation part
    rotation = quat_to_rotation_matrix(quat)
    batch_shape = rotation.shape[:-2]
    
    # homogeneous transformation matrix
    transform = torch.zeros(batch_shape + (4, 4), dtype=rotation.dtype, device=rotation.device)
    transform[..., :3, :3] = rotation
    transform[..., :3, 3] = pos
    transform[..., 3, 3] = 1.0
    
    return transform

def compute_rest_local_positions(
    joint_positions: torch.Tensor,
    parent_indices: List[int]
) -> torch.Tensor:
    """
    Compute local positions relative to parent joints from global joint positions.
    """
    
    num_joints = joint_positions.shape[0]
    local_positions = torch.zeros_like(joint_positions)
    
    for j in range(num_joints):
        parent_idx = parent_indices[j]
        
        if parent_idx >= 0 and parent_idx != j and parent_idx < num_joints:
            # Child joint: local offset = global_pos - parent_global_pos
            local_positions[j] = joint_positions[j] - joint_positions[parent_idx]
        else:
            # Root joint: use global position as local position
            local_positions[j] = joint_positions[j]
    
    return local_positions