Spaces:
Sleeping
Sleeping
| def get_classification_report(): | |
| from sklearn.metrics import classification_report | |
| import pandas as pd | |
| # Load your test data | |
| df = pd.read_csv("test.csv") | |
| texts = df["text"].tolist() | |
| true_labels = df["label"].tolist() | |
| # Load tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained("Shrish/mbert-sentiment") | |
| model = TFAutoModelForSequenceClassification.from_pretrained("Shrish/mbert-sentiment") | |
| # Tokenize and predict | |
| inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf") | |
| outputs = model(inputs) | |
| predictions = tf.math.argmax(outputs.logits, axis=1).numpy() | |
| # Generate report | |
| report = classification_report(true_labels, predictions, target_names=["negative", "neutral", "positive"]) | |
| return report | |