Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import TFBertForSequenceClassification, BertTokenizer | |
| import tensorflow as tf | |
| # Load model and tokenizer from your HF model repo | |
| model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
| tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") | |
| def classify_sentiment(text): | |
| inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True) | |
| predictions = model(inputs).logits | |
| label = tf.argmax(predictions, axis=1).numpy()[0] | |
| labels = {0: "Negative", 1: "Neutral", 2: "Positive"} | |
| return labels[label] | |
| demo = gr.Interface(fn=classify_sentiment, | |
| inputs=gr.Textbox(placeholder="Enter a tweet..."), | |
| outputs="text", | |
| title="Tweet Sentiment Classifier", | |
| description="Multilingual BERT-based Sentiment Analysis") | |
| demo.launch() | |