Spaces:
Sleeping
Sleeping
| '''import gradio as gr | |
| from transformers import TFBertForSequenceClassification, BertTokenizer | |
| import tensorflow as tf | |
| # Load model and tokenizer from your HF model repo | |
| model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
| tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") | |
| def classify_sentiment(text): | |
| inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True) | |
| predictions = model(inputs).logits | |
| label = tf.argmax(predictions, axis=1).numpy()[0] | |
| labels = {0: "Negative", 1: "Neutral", 2: "Positive"} | |
| return labels[label] | |
| demo = gr.Interface(fn=classify_sentiment, | |
| inputs=gr.Textbox(placeholder="Enter a tweet..."), | |
| outputs="text", | |
| title="Tweet Sentiment Classifier", | |
| description="Multilingual BERT-based Sentiment Analysis") | |
| demo.launch() | |
| ''' | |
| import gradio as gr | |
| from transformers import TFBertForSequenceClassification, BertTokenizer | |
| import tensorflow as tf | |
| # Load model and tokenizer from Hugging Face | |
| model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
| tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") | |
| # Manually define the correct mapping | |
| LABELS = { | |
| 0: "Neutral", | |
| 1: "Positive", | |
| 2: "Negative" | |
| } | |
| def classify_sentiment(text): | |
| inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) | |
| outputs = model(inputs) | |
| probs = tf.nn.softmax(outputs.logits, axis=1) | |
| pred_label = tf.argmax(probs, axis=1).numpy()[0] | |
| confidence = float(tf.reduce_max(probs).numpy()) | |
| return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})" | |
| demo = gr.Interface( | |
| fn=classify_sentiment, | |
| inputs=gr.Textbox(placeholder="Type your tweet here..."), | |
| outputs="text", | |
| title="Sentiment Analysis on Tweets", | |
| description="Multilingual BERT model fine-tuned for sentiment classification. Labels: Positive, Neutral, Negative." | |
| ) | |
| demo.launch() | |