Spaces:
Sleeping
Sleeping
| from transformers import AutoTokenizer, TFAutoModelForSequenceClassification | |
| from sklearn.metrics import classification_report | |
| import tensorflow as tf | |
| import pandas as pd | |
| def get_classification_report(): | |
| try: | |
| # Load test data | |
| df = pd.read_csv("test.csv") | |
| texts = df["text"].tolist() | |
| true_labels = df["label"].tolist() | |
| # Load tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained("shrish191/sentiment-bert") | |
| model = TFAutoModelForSequenceClassification.from_pretrained("shrish191/sentiment-bert") | |
| # Tokenize | |
| inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf") | |
| outputs = model(inputs) | |
| preds = tf.math.argmax(outputs.logits, axis=1).numpy() | |
| # Generate report | |
| report = classification_report(true_labels, preds, target_names=["negative", "neutral", "positive"]) | |
| return report | |
| except Exception as e: | |
| return f"⚠️ Error occurred: {str(e)}" | |