Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -361,69 +361,134 @@ demo.launch()
|
|
| 361 |
'''
|
| 362 |
|
| 363 |
import gradio as gr
|
| 364 |
-
import
|
| 365 |
-
import
|
| 366 |
-
import plotly.graph_objs as go
|
| 367 |
-
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
| 368 |
-
from tensorflow.nn import softmax
|
| 369 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
|
| 371 |
-
# Load model and tokenizer
|
| 372 |
-
|
| 373 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 374 |
-
model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
|
| 375 |
|
| 376 |
-
|
| 377 |
-
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
|
| 378 |
-
outputs = model(inputs)
|
| 379 |
-
scores = softmax(outputs.logits, axis=1).numpy()[0]
|
| 380 |
-
labels = ['Negative', 'Neutral', 'Positive']
|
| 381 |
-
sentiment = labels[np.argmax(scores)]
|
| 382 |
-
confidence = round(float(np.max(scores)) * 100, 2)
|
| 383 |
-
return sentiment, confidence
|
| 384 |
|
| 385 |
-
#
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
if not submission.stickied:
|
| 396 |
-
sentiment, confidence = classify_sentiment(submission.title)
|
| 397 |
-
posts.append({"title": submission.title, "sentiment": sentiment, "confidence": confidence})
|
| 398 |
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
|
|
|
| 403 |
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
fig.update_layout(title="Sentiment Distribution in r/{} ({} posts)".format(subreddit_name, num_posts))
|
| 408 |
|
| 409 |
-
|
|
|
|
|
|
|
| 410 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
with gr.Blocks() as demo:
|
| 412 |
-
gr.Markdown("##
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
|
| 425 |
-
if __name__ == "__main__":
|
| 426 |
-
demo.launch()
|
| 427 |
|
| 428 |
|
| 429 |
|
|
|
|
| 361 |
'''
|
| 362 |
|
| 363 |
import gradio as gr
|
| 364 |
+
from transformers import TFAutoModelForSequenceClassification, AutoTokenizer
|
| 365 |
+
import tensorflow as tf
|
|
|
|
|
|
|
|
|
|
| 366 |
import numpy as np
|
| 367 |
+
import praw
|
| 368 |
+
import re
|
| 369 |
+
from wordcloud import WordCloud
|
| 370 |
+
import matplotlib.pyplot as plt
|
| 371 |
+
from collections import Counter
|
| 372 |
+
import plotly.graph_objects as go
|
| 373 |
+
import os
|
| 374 |
|
| 375 |
+
# Load pre-trained model and tokenizer
|
| 376 |
+
model = TFAutoModelForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
| 377 |
+
tokenizer = AutoTokenizer.from_pretrained("shrish191/sentiment-bert")
|
|
|
|
| 378 |
|
| 379 |
+
label_map = {0: 'Negative', 1: 'Neutral', 2: 'Positive'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
|
| 381 |
+
# Sentiment Prediction Function
|
| 382 |
+
def predict_sentiment(text):
|
| 383 |
+
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
|
| 384 |
+
outputs = model(inputs)[0]
|
| 385 |
+
probs = tf.nn.softmax(outputs, axis=1).numpy()
|
| 386 |
+
pred_label = np.argmax(probs, axis=1)[0]
|
| 387 |
+
return label_map[pred_label]
|
| 388 |
+
|
| 389 |
+
# Reddit URL Handling
|
| 390 |
+
def analyze_reddit_url(url):
|
| 391 |
+
reddit = praw.Reddit(
|
| 392 |
+
client_id="YOUR_CLIENT_ID",
|
| 393 |
+
client_secret="YOUR_CLIENT_SECRET",
|
| 394 |
+
user_agent="YOUR_USER_AGENT"
|
| 395 |
+
)
|
| 396 |
+
try:
|
| 397 |
+
submission = reddit.submission(url=url)
|
| 398 |
+
submission.comments.replace_more(limit=0)
|
| 399 |
+
comments = [comment.body for comment in submission.comments.list() if len(comment.body) > 10][:100]
|
| 400 |
+
sentiments = [predict_sentiment(comment) for comment in comments]
|
| 401 |
+
sentiment_counts = Counter(sentiments)
|
| 402 |
+
result_text = "\n".join([f"{s}: {c}" for s, c in sentiment_counts.items()])
|
| 403 |
+
|
| 404 |
+
# Pie chart
|
| 405 |
+
fig = go.Figure(data=[go.Pie(labels=list(sentiment_counts.keys()),
|
| 406 |
+
values=list(sentiment_counts.values()),
|
| 407 |
+
hole=0.3)])
|
| 408 |
+
fig.update_layout(title="Sentiment Distribution of Reddit Comments")
|
| 409 |
+
return result_text, fig
|
| 410 |
+
except Exception as e:
|
| 411 |
+
return str(e), None
|
| 412 |
+
|
| 413 |
+
# Subreddit Analysis Function
|
| 414 |
+
def analyze_subreddit(subreddit_name):
|
| 415 |
+
reddit = praw.Reddit(
|
| 416 |
+
client_id="YOUR_CLIENT_ID",
|
| 417 |
+
client_secret="YOUR_CLIENT_SECRET",
|
| 418 |
+
user_agent="YOUR_USER_AGENT"
|
| 419 |
+
)
|
| 420 |
+
try:
|
| 421 |
+
subreddit = reddit.subreddit(subreddit_name)
|
| 422 |
+
posts = list(subreddit.hot(limit=100))
|
| 423 |
+
texts = [post.title + " " + post.selftext for post in posts if post.selftext or post.title]
|
| 424 |
+
|
| 425 |
+
if not texts:
|
| 426 |
+
return "No valid text data found in subreddit.", None
|
| 427 |
|
| 428 |
+
sentiments = [predict_sentiment(text) for text in texts]
|
| 429 |
+
sentiment_counts = Counter(sentiments)
|
| 430 |
+
result_text = "\n".join([f"{s}: {c}" for s, c in sentiment_counts.items()])
|
|
|
|
|
|
|
|
|
|
| 431 |
|
| 432 |
+
# Pie chart
|
| 433 |
+
fig = go.Figure(data=[go.Pie(labels=list(sentiment_counts.keys()),
|
| 434 |
+
values=list(sentiment_counts.values()),
|
| 435 |
+
hole=0.3)])
|
| 436 |
+
fig.update_layout(title=f"Sentiment Distribution in r/{subreddit_name}")
|
| 437 |
|
| 438 |
+
return result_text, fig
|
| 439 |
+
except Exception as e:
|
| 440 |
+
return str(e), None
|
|
|
|
| 441 |
|
| 442 |
+
# Image Upload Functionality
|
| 443 |
+
from PIL import Image
|
| 444 |
+
import pytesseract
|
| 445 |
|
| 446 |
+
def extract_text_from_image(image):
|
| 447 |
+
try:
|
| 448 |
+
img = Image.open(image)
|
| 449 |
+
text = pytesseract.image_to_string(img)
|
| 450 |
+
return text
|
| 451 |
+
except Exception as e:
|
| 452 |
+
return f"Error extracting text: {e}"
|
| 453 |
+
|
| 454 |
+
def analyze_image_sentiment(image):
|
| 455 |
+
extracted_text = extract_text_from_image(image)
|
| 456 |
+
if extracted_text:
|
| 457 |
+
sentiment = predict_sentiment(extracted_text)
|
| 458 |
+
return f"Extracted Text: {extracted_text}\n\nPredicted Sentiment: {sentiment}"
|
| 459 |
+
return "No text extracted."
|
| 460 |
+
|
| 461 |
+
# Gradio Interface
|
| 462 |
with gr.Blocks() as demo:
|
| 463 |
+
gr.Markdown("## 🧠 Sentiment Analysis App")
|
| 464 |
+
with gr.Tab("Analyze Text"):
|
| 465 |
+
input_text = gr.Textbox(label="Enter text")
|
| 466 |
+
output_text = gr.Textbox(label="Predicted Sentiment")
|
| 467 |
+
analyze_btn = gr.Button("Analyze")
|
| 468 |
+
analyze_btn.click(fn=predict_sentiment, inputs=input_text, outputs=output_text)
|
| 469 |
+
|
| 470 |
+
with gr.Tab("Analyze Reddit URL"):
|
| 471 |
+
reddit_url = gr.Textbox(label="Enter Reddit post URL")
|
| 472 |
+
url_result = gr.Textbox(label="Sentiment Counts")
|
| 473 |
+
url_plot = gr.Plot(label="Pie Chart")
|
| 474 |
+
analyze_url_btn = gr.Button("Analyze Reddit Comments")
|
| 475 |
+
analyze_url_btn.click(fn=analyze_reddit_url, inputs=reddit_url, outputs=[url_result, url_plot])
|
| 476 |
+
|
| 477 |
+
with gr.Tab("Analyze Image"):
|
| 478 |
+
image_input = gr.Image(label="Upload an image")
|
| 479 |
+
image_result = gr.Textbox(label="Sentiment from Image Text")
|
| 480 |
+
analyze_img_btn = gr.Button("Analyze Image")
|
| 481 |
+
analyze_img_btn.click(fn=analyze_image_sentiment, inputs=image_input, outputs=image_result)
|
| 482 |
+
|
| 483 |
+
with gr.Tab("Analyze Subreddit"):
|
| 484 |
+
subreddit_input = gr.Textbox(label="Enter subreddit name (without r/)")
|
| 485 |
+
subreddit_result = gr.Textbox(label="Sentiment Counts")
|
| 486 |
+
subreddit_plot = gr.Plot(label="Pie Chart")
|
| 487 |
+
analyze_subreddit_btn = gr.Button("Analyze Subreddit")
|
| 488 |
+
analyze_subreddit_btn.click(fn=analyze_subreddit, inputs=subreddit_input, outputs=[subreddit_result, subreddit_plot])
|
| 489 |
+
|
| 490 |
+
demo.launch()
|
| 491 |
|
|
|
|
|
|
|
| 492 |
|
| 493 |
|
| 494 |
|