Spaces:
Sleeping
Sleeping
Update evaluate.py
Browse files- evaluate.py +5 -2
evaluate.py
CHANGED
|
@@ -8,8 +8,11 @@ def get_classification_report():
|
|
| 8 |
true_labels = df["label"].tolist()
|
| 9 |
|
| 10 |
# Load tokenizer and model
|
| 11 |
-
tokenizer = AutoTokenizer.from_pretrained("Shrish/mbert-sentiment")
|
| 12 |
-
model = TFAutoModelForSequenceClassification.from_pretrained("Shrish/mbert-sentiment")
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Tokenize and predict
|
| 15 |
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf")
|
|
|
|
| 8 |
true_labels = df["label"].tolist()
|
| 9 |
|
| 10 |
# Load tokenizer and model
|
| 11 |
+
#tokenizer = AutoTokenizer.from_pretrained("Shrish/mbert-sentiment")
|
| 12 |
+
#model = TFAutoModelForSequenceClassification.from_pretrained("Shrish/mbert-sentiment")
|
| 13 |
+
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
|
| 14 |
+
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
|
| 15 |
+
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)
|
| 16 |
|
| 17 |
# Tokenize and predict
|
| 18 |
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf")
|